Grab an attendance sheet

Lecture 12 March 13, 2025

TODAY

- Sensors, using temperature as an example
- Sensors for this year
- UPCOMING
 - LabO6 out today or tomorrow buck converter
 - No EX06 there will be one more pset on 3DP after spring break
 - Tue no lecture, will hold OH
 - Thu 15 min team presentations
 - Next week DR2

Why sensors

The HW/SW systems we create often/always have to interact with the outside world

- They need to sometimes take in information aka sense
- Sometimes they need to act on the world *aka* actuate
- These are two sides of the same thing **transducers...** ...but we'll focus on sensors here

Sensors

- Pretty much all sensors convert physical quantities into
 - Voltage
 - Time (or frequency)
- Sometimes there's an intermediate step of going to current (charge), magnetic flux, etc.
 - But usually those end up getting converted to voltage or time

Ultrasonic distance sensor

Plantower PMS series [1003, 3003, etc.]

Invensense MPU6050

Ruffus ut aurum purum intensum (Ruddy as pure intense gold) Subrubicundus color ut crocus occidentalis (Slightly red as occidental saffron) Rubeus ut crocus orientalis (Red as oriental saffron) Subrubicundus ut flamma ignis remissa (Slightly red as a lowered flame of fire)

Ruffus ut aurum purum intensum (Ruddy as pure intense gold) Subrubicundus color ut crocus occidentalis (Slightly red as occidental saffron) Rubeus ut crocus orientalis (Red as oriental saffron) Subrubicundus ut flamma ignis remissa (Slightly red as a lowered flame of fire)

- Diabetes Mellitus
 - *Diabetes*: Greek, meaning to urinate excessively
 - *Mellitus*: Latin, meaning sweet like honey
- Type I diabetes, IDDM (insulin-dependent diabetes mellitus)
 - Symptoms
 - Hyperglycemia (various long-term cardiovascular diseases)
 - Hypoglycemia (can lead to coma)
 - Devastating disease until 1923
 - 1897 life expectancy of 10-yr old after diagnosis: 1.3 yrs
 - 1945 life expectancy of 10-yr old after diagnosis: **45 yrs**
- Type II diabetes, "adult-onset"
 - Characterized by loss of cell response to insulin

Insulin for diabetes

 1921: Banting, Best, and Macleod show that Islets of Langerhans in pancreas produce substance that reverses diabetes → Nobel Prize, 1923

Commercialization

- First large-scale production by Eli Lilly & Co. (1922, Britain)
- Purified from cows (bovine) & then pigs (porcine)
- First protein ever sequenced (Sanger, 1955)
 - Nobel Prize 1958
- First protein ever synthesized (1963)
- One of the first proteins whose 3D structure was determined (1971)
- First protein synthesized by recombinant DNA technology (1979)

- Need to measure glucose levels to know when to administer insulin
 - If you give insulin and glucose goes too low...coma
- ALL modern glucose meters are electronic
 - Leverage existence of enzymes that act on glucose as part of metabolic pathways B-D-glucose
 - Generate electrons

gluconolactone

- Glucose test strips have the chemistry to do the reaction
- Also, more recently have continuous glucose meters
 - Chemistry is in the needle

- How to measure charge?
- One common way is to turn current into voltage
 - Transimpedance amplifier

- Genesis: In 1980s, an ADI engineer heard about forming mechanical sensors in silicon
- Market pull was airbag accelerometers (50 g)
 - Current product was \$50
 - Auto manufacturers wanted \$5 price point
- Team was formed in 1986, first product in 1993
 - Fabrication process was under development since early 80's at Berkeley

Invensense MPU6050

• Original ADXL50

Acceleration \rightarrow motion of proof mass \rightarrow change in gap

• Original ADXL50

Parallel plate cap

$$C(x,t) = \frac{\epsilon A}{g(x,t)}$$

C charge vs. voltage

$$Q(x,t) = C(x,t)V$$

dV

acl

dr

DC voltage
$$V_S$$
 $i_C = \frac{dQ}{dt} = C(x, t) \frac{dVS}{dt} + V_S \frac{\partial C}{\partial x} \Big|_{V_S} \frac{dx}{dt}$
Transimpedance $V_{OUT} = -R_F i_C = \frac{-R_F V_S \frac{\partial C}{\partial x}}{\frac{\partial C}{\partial x}} \Big|_{V_S} \frac{dx}{dt}$

dO

Acceleration \rightarrow motion of proof mass \rightarrow change in gap \rightarrow change in C \rightarrow change in current \rightarrow change in voltage

Just a constant

The "hello world" of sensing

- Very common and very important for many applications...
- Lots of ways to do it everything is a temperature sensor
- Illustrates key sensor selection principles and tradeoffs

- Like most quantities we care about, several different transduction approaches
- Same with light, presence, etc.
- To select among approaches, it helps to understand how they work
 - To understand tradeoffs

Several common ways to measure temperature

- Most common: via resistance
- Less common: turning temperature directly into voltage
- Coolest: via bandgap sensors

Temperature-varying resistors

• Every resistor you buy has a resistance that varies with temperature

Datasheet

Joel's sensor board

Temperature-varying resistors

• Every resistor you buy has a resistance that varies with temperature

Datasheet

Joel's sensor board

Temperature-varying resistors

• Every resistor you buy has a resistance that varies with temperature

$$R = R(T)$$

Temperature Coefficient of Resistance (TCR)

$$TCR = \frac{\frac{R(T_2) - R(T_1)}{R(T_1)}}{(T_2 - T_1)} [ppm/°C] \qquad T_1 \text{ is typically 25 °C}$$

$$R(T_2) = R(T_1) (1 + TCR \cdot (T_2 - T_1))$$

For our 4.7k pull-up resistor from sensor board, at $T_2 = 100 \,^{\circ}C$: $R(T_2) = 4.7k(1 + 100e^{-6} \cdot (75^{\circ}C))$ $R(T_2) = 4.7k(1.0075) = 4.73k$

good for us...but not a great sensor

Thermistor

Instead...make a resistor with a really large TCR

- Thermistor = temperature-sensitive resistor
- Two-terminal device, avail in small SMT package
- Composite material of metallic oxides
- Inexpensive (~\$0.04 @ 1k)
- NTC = negative temperature coefficient [of resistance]
- This is a nonlinear characteristic, so going from $R \rightarrow T$ requires some work
 - Multiple approaches depending on desired accuracy
 - Though sometimes the absolute temperature doesn't matter, just trying to keep a system near a reference temperature

NTC thermistor

- How to convert resistance (change) into something we can act on?
- Turn into a voltage, of course
- → use V = IR(T)
 - Need at least one other resistor (or a good current source)
 - May use a bridge circuit (see later)
- Issues
 - Extra components → increased cost, space
 - Current for measurement will induce some heating \rightarrow and thus error
 - This is called Self heating

RTD thermistor

- RTD: resistance temperature detectors
- Pure element (like Pt)
- Available in SMT package
- Much more expensive than NTC
 - \$0.9898 @1k quantities
- Broader range esp. to high temperature
- Sensitivity < NTC but higher than regular resistor
 - TCR = 3850 ppm/°C
- Much more linear than thermistor
- Measurement circuits similar to NTC

P1K0.0805.1FC.B FlipChip platinum sensor

For the automatic assembling on PCB by soldering or bonding

Benefits & Characteristics

Excellent long-term stability

- Minimum space consumption on PCB
- Optimal price-performance ratio

Low self-heatingFast response time

Illustration¹⁾

Thermocouples

- Not a resistive temperature sensor!
- Directly converts temperature differences into voltage differences
 - Need to know temp at "cold" junction
- Mechanism involves thermoelectricity: connecting two materials with different thermoelectric coefficients
 - Thermoelectric = coupling between thermal (ΔT) and electric (ΔV) domains $-\nabla \phi = \alpha_s \nabla T$
- This also used (in reverse) for Peltier coolers
- Can go to **really high** temperatures (2000+ K)
- Not very common in integrated systems (but we'll see one in a bit...)

Bandgap temperature sensors

• Use physics intrinsic to semiconductors

pn junction (diode) equation I_D =

$$I_D = I_0(e^{\frac{V_D}{kT}} - 1)$$

- If you already have diodes or transistors, can easily incorporate
- Good to about ~200 °C
- Often included "for free" in a MCU
 - Including ESP32C3
 - But only measures temperature of the MCU...
 - And will be affected by power dissipation in MCU

Power consumption

Low power consumption components capable of working in Deep-sleep mode

ESP32-C3 Functional Block Diagram

Bandgap temperature sensors

• Use physics intrinsic to semiconductors

pn junction (diode) equation I_D =

$$I_D = I_0(e^{\frac{V_D}{kT}} - 1)$$

- If you already have diodes or transistors, can easily incorporate
- Good to about ~200 °C
- Often included "for free" in a MCU
 - Including ESP32C3
 - But only measures temperature of the MCU...
 - And will be affected by power dissipation in MCU

Power consumption

Low power consumption components capable of working in Deep-sleep mode

ESP32-C3 Functional Block Diagram

Temperature sensors

This means bandgap

Some comparisons, from →

Temperature sensing fundamentals

TEXAS INSTRUMENTS

Introduction to Temperature Sensing

In embedded systems, there is a constant need for higher performance and more features in a smaller form factor. This requires system designers to **monitor** the overall temperature to ensure safety and **protect** ogging further

rement to not

	IC Sensor	Thermistor	RTD	Thermo couple
Range	–55°C to +200°C	−100°C to +500°C	–240°C to 600°C	–260°C to +2300°C
Accuracy	Good / Best	Calibration dependant	Best	Better
Footprint / Size	Smallest	Small	Moderate	Large
Complexity	Easy	Moderate	Complex	Complex
Linearity	Best	Low	Best	Better
Topology	Point-to- point, Multi- drop, Daisy Chain	Point-to- point	Point-to- point	Point-to- point
Price	Low to Moderate	Low to Moderate	Expensive	Expensive

In sensing, we want to choose/design an approach... And ultimately choose a **specific** component

How do we pick? **Specs**

A partial list – these are common to **many** sensors (not just temperature!)

- Range
 - The range [min, max] over which the sensor is designed to operate
- Sensitivity
 - The slope (may be local) of the inputoutput characteristic

Not a thermistor! This is actually a bandgap temp sensor IC

Panasonic

INDUSTRY

Multilayer NTC Thermistors ERTJ series

Ratings					
Size code (inch size)	Z(0201)	0(0402)	1(0603)		
Operating temperature range	_40 to 125 ℃				
Rated maximum power dissipation ^{*1}	33 mW	66 mW	100 mW		
Dissipation factor*2	Approximately 1 mW / ℃	Approximately 2 mW / ℃	Approximately 3 mW / ℃		

Low-Power Linear Active Thermistor ICs

A partial list – these are common to **many** sensors (not just temperature!)

- (non)Linearity
 - For sensors with nominally linear inputoutput relationship,
 - Typically the maximum deviation from the straight line

A partial list – these are common to **many** sensors (not just temperature!)

- (non)Linearity
 - For sensors with nominally linear inputoutput relationship,
 - typically the maximum deviation from the straight line

DC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated: MCP9700/9700A/9700B: V_{DD} = 2.3V to 5.5V, GND = Ground, T_A = -40°C to +125°C and No load MCP9701/9701A: V_{DD} = 3.1V to 5.5V, GND = Ground, T_A = -10°C to +125°C and No load						
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Output Voltage, $T_A = 0^{\circ}C$	V _{0°C}		400	—	mV	MCP9701/9701A
Temperature Coefficient	T _C	_	10.0	_	mV/°C	MCP9700/9700A/9700B
	T _C		19.5		mV/°C	MCP9701/9701A
Output Nonlinearity	V _{ONL}	_	±0.5	—	°C	T _A = 0°C to +70°C (Note 3)
Output Current	OUT		—	100	μΑ	
Output Impedance	Z _{OUT}	_	20	—	Ω	l _{OUT} = 100 μA, f = 500 Hz
Output Load Regulation	ΔV _{OUT} / ΔΙ _{ΟUT}	_	2	—	Ω	$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $I_{OUT} = 100 \ \mu A$
Turn-On Time	t _{ON}		800	—	μs	
Typical Load Capacitance	C _{LOAD}	_	_	1000	pF	Note 4
· 1 · · · · · · · · · · · · · · · · · · ·						
SC-70 Thermal Response to 63%	t _{RES}		1.3	—	S	30°C (Air) ஒடி125°C

A partial list – these are common to **many** sensors (not just temperature!)

- Accuracy
 - Deviation from the true result
 - This can sometimes be improved via calibration

Low-Power Linear Active Thermistor ICs

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Sensor Accuracy (Notes 2, 3)					
T _A = +25°C	T _{ACY}	—	±1	_	°C	
T _A = +20°C to +70°C	T _{ACY}	-1.0	±0.5	+1.0	°C	MCP9700B
T _A = -40°C to +125°C	T _{ACY}	-2.0	±0.5	+4.0	°C	MCP9700B
$T_A = 0^{\circ}C$ to +70°C	T _{ACY}	-2.0	±1	+2.0	°C	MCP9700A/9701A
T _A = -40°C to +125°C	T _{ACY}	-2.0	±1	+4.0	°C	MCP9700A
T _A = -10°C to +125°C	T _{ACY}	-2.0	±1	+4.0	°C	MCP9701A
T _A = 0°C to +70°C	T _{ACY}	-4.0	±2	+4.0	°C	MCP9700/9701
T _A = -40°C to +125°C	T _{ACY}	-4.0	±2	+6.0	°C	MCP9700
T _A = -10°C to +125°C	T _{ACY}	-4.0	±2	+6.0	°C	MCP9701
$T_{A} = -40^{\circ}C \text{ to } +150^{\circ}C$	T _{ACY}	-4.0	±2	+6.0	°C	MCP9700 High Temperature (Note 1
$T_A = -40^{\circ}C$ to $+150^{\circ}C$	T _{ACY}	-4.0	±2	+4.0	°C	MCP9700B High Temperature (Note 1

Sensor specifications

- Response time
 - How fast will sensor output change due to sensor input change
 - For analog sensors, this may be expressed as a time constant
 - For sensors with digital output, may be the time between updates
 - May also be expressed in terms of frequency response

DC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated: MCP9700/9700A: $V_{DD} = 2.3V$ to 5.5V, GND = Ground, $T_A = -40^{\circ}C$ to $+125^{\circ}C$ and No load MCP9701/9701A: $V_{DD} = 3.1V$ to 5.5V, GND = Ground, $T_A = -10^{\circ}C$ to $+125^{\circ}C$ and No load						
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Output Current	I _{OUT}	_	—	100	μA	
Output Impedance	Z _{OUT}	_	20	_	Ω	I _{OUT} = 100 μA, f = 500 Hz
Output Load Regulation	ΔV _{OUT} / ΔI _{OUT}	_	1	_	Ω	T _A = 0°C to +70°C I _{OUT} = 100 μA
Turn-On Time	t _{ON}	_	800	_	μs	
Typical Load Capacitance	CLOAD	—	—	1000	pF	Note 4
SC-70 Thermal Response to 63%	t _{RES}	_	1.3	_	s	30°C (Air) to +125°C
TO-92 Thermal Response to 63%	t _{RES}	_	1.65	_	S	(Fluid Bath) (Note 5)

SHT40

Response time ¹⁰	$ au_{63\%}$	2	s
-----------------------------	--------------	---	---

Sensor specifications

- Stability, repeatability, long-term drift
 - If I make the same measurement 3 times, will I get the same result?
 - Will the result today be the same as it is in 1 minute, 1 day, 1 year, 10 years?
- Cost

SHT40

•	Size	

	high	0.04	°C
Repeatability ³	medium	0.07	°C
	low	0.1	°C

³ The stated repeatability is three times the standard deviation (3σ) of multiple consecutive measurement values at constant conditions

and is a measure for the noise on the physical sensor output. Different repeatability commands are listed in **Table 8**

Sensor specifications

SHT40

- Current/power consumption
 - This is critical for battery-operated systems!
- Supply voltage
 - Is sensor voltage same as other components, or do you need to create additional supply voltages?

MCP970X

Low-Power Linear Active Thermistor ICs

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated: MCP9700/9700A/9700B: $V_{DD} = 2.3V$ to 5.5V, GND = Ground, $T_A = -40^{\circ}$ C to +125°C and No load MCP9701/9701A: $V_{DD} = 3.1V$ to 5.5V, GND = Ground, $T_A = -10^{\circ}$ C to +125°C and No load						
Parameter Sym. Min. Typ. Max. Unit Conditions						
Power Supply						
Operating Voltage Range	V _{DD}	2.3		5.5	V	MCP9700/9700A/9700B
	V _{DD}	3.1	_	5.5	V	MCP9701/9701A
Operating Current	I _{DD}		6	12	μA	
	I _{DD}	_	_	15	μA	T _A = +150°C (Note 1)
Line Regulation	$\Delta^{\circ}C/\Delta V_{DD}$	_	0.1	_	°C/V	

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Comments
Supply voltage	V _{DD}		1.08	3.3	3.6	V	-
Power-up/down	VPOR	Static power supply	0.6	-	1.08	V	-
Slew rate of the supply voltage	$V_{DD, slew}$		-	-	20	V/m s	Voltage changes on the supply between $V_{DD, min}$ and $V_{DD, max}$. Faster slow rates may lead to a reset
		Idle state	-	0.08 -	1.0 3.4	μA	At 25 °C At 125 °C
Course and		Power up	-	50	-	μA	-
Supply current (heater off)	I _{DD}	Measurement	-	320	500	μA	Current while sensor is measuring
		Avg., high repeatability Avg., med. repeatability Avg., low repeatability	- -	2.2 1.2 0.4	- -	μA	Avg. current consumption (continuous operation with 1 meas. per second)
Supply current (heater on)		Nomin. heater "200 mW"	-	60	100	mA	
	I _{DD}	Nomin. heater "110 mW"	-	33 55 mA see section		see section 4.9	
		Nomin. heater "20 mW"	-	6	10	mA	

Packaging

Sensors must interact with the quantity being measured

- Sometimes this is easy
 - Inertial sensors (acceleration, rotation) are easiest because those forces transmit through objects
- But usually this is not easy...

and sometimes it is really hard

- Examples
 - A temperature sensor embedded in MCU can't measure temperature somewhere else
 - Humidity sensors have to interact with outside air
 - A rain sensor must sense...water!
 - A light sensor must have optical access at the relevant wavelengths

Packaging – example for Sensirion RHT sensors

- 21-page design guide for packaging temperature (and humidity sensors)
 - This will necessarily require domain knowledge
 - Thermal design, mechanical design, etc.

Most important Design-In Recommendations

Figure 1. A small dead volume allows for rapid adaption to changes in the environment.

Figure 2. Separating a sensor compartment from the remaining housing minimizes the influence of entrapped air on the sensor.

Figure 3. A large opening in the housing provides improved air exchange and thus enhanced access to the environment.

Figure 4. Decoupling of the sensor from heat sources on the PCB minimizes the influence of internal heating on the sensor.

Packaging – Acconeer radar

• 30-page design guide for packaging

LOD GOGO III UN TITZT.

2.3 Choosing a 1.8 V power regulator for A111/A121

When the A111/A121 radar sensors transfer from the "SLEEP" state to the "MEASURE" state, there is an abrupt change in current consumption from ~3 mA to ~75 mA on the 1.8 V power domain. It must be ensured that the power regulator used to supply the A111/A121 has a load transient response that handles this change in current without the output voltage dropping below the minimum operating supply voltage of A111/A121. For details regarding the power consumption of A111 and A121, refer to the datasheet of the respective product [2] [3].

3.7 Radomes

A radome is a dielectric layer that is transparent to the radar signal while protecting the radar from mechanical impact and weather, see Figure 11. Often the product encapsulation can be made as a radome without introducing additional costs. We will here see that by tuning the radome thickness and distance, the radome can be made transparent to the radar.

2.7.1 Dadama thicknose

Signal conditioning and conversion

- The designer has to consider how to connect the sensor to the rest of the system
- Do you want analog or digital data?
- Occasionally, you want an analog signal
 - Ex: for analog temperature compensation
 - Ex: sometimes cheaper

Signal conditioning and conversion

- If analog signal isn't already a voltage (aka RTD, thermistor), usually convert to voltage
 - Often via bridge circuit
- Might need to filter to reduce noise
 - RC, Sallen-Key, etc.
 - As always, tradeoff between amount of hardware vs. amount of software
- Best to make signal take full range of ADC
 - May require gain [or signal attenuation]
 - Many MCUs have on-board ADCs, or can use dedicated ADC
 - Need to consider number of bits, etc. [we won't get into this]

Example: compare two approaches

- NTC (Thermistor) vs. Bandgap-referenced digital output
- Assume we are fine with measurement on a PCB
 - So SMT packages are used for both
- NTC
 - Panasonic ERT-J series
 - Range -40 to 125 °C
 - Nominally 10k resistance
 - Package 0201 [0.6 x 0.3 x 0.3 mm]
 - \$0.0356 @ 1k

- Bandgap
 - UMW LM75BDP
 - Range -55 to 125 °C
 - I2C comms
 - Package 8-pin TSSOP [3 x 5 x 1.1 mm]
 - \$0.345 @ 1k

Compare two approaches

- To adjust output to span ADC for given input
- Now we need non-inv op-amp
- 1 op-amp + 3 resistors
- Cheap TLV9002 op-amp
 - \$0.282 @ 1k
 - 8-TSSOP [3 x 4.4 x 1.2 mm]
 - Smaller packages avail, but more \$\$

Compare two approaches

• NTC

- Cost
 - NTC \$0.0356 @ 1k
 - 4 resistors \$0.00984 @ 1k
 - 1 IC \$0.282 @ 1k
 - Assembly \$0.0017 x 18 joints
 - Total: \$0.341
- Size
 - 8-TSSOP [3 x 4.4 x 1.2 mm]
 - +passives, traces,
 - So probably around similar size

- Bandgap
 - Cost
 - \$0.345 @ 1k
 - Assembly \$0.0017 x 8 joints
 - Total: \$0.359
 - Size
 - Package 8-pin TSSOP [3 x 5 x 1.1 mm]

Compare two approaches

- So how to choose?
 - May be on specs
 - Maybe having a linear output, or accuracy is really important
 - Or other issues
 - Maybe don't need to amplify, and cost is driver, and so thermistor makes sense
 - Maybe don't want to spend extra for MCU with ADC
 - Maybe don't want to use two MCU pins for I2C
 - Only use one pin for ADC
 - Maybe don't want to spend engineering time to design/test analog circuit

Humidity

- Capacitive humidity sensor (like in SHT40)
- Parallel plate capacitor: $C = \frac{\epsilon A}{g}$
- Create capacitor with dielectric (ϵ) that absorbs water (hygroscopic)
 - $\epsilon_{water} \approx 80 \gg \epsilon_{dielectric}$ $\rightarrow C \uparrow$ as humidity \uparrow
- And then we need a circuit that measures capacitance
 - We saw earlier how to turn C into voltage
 - Can also turn C \rightarrow freq \rightarrow time
- There are also *resistive* humidity sensors (and probably other mechanisms), but capacitive is most common

Humidity

- Capacitive humidity sensor (like in SHT40)
- Parallel plate capacitor: $C = \frac{1}{2}$
- Create capacitor with dielect absorbs water (*hygroscopic*)
 - $\epsilon_{water} \approx 80 \gg \epsilon_{dielectric}$ $\rightarrow C \uparrow$ as humidity \uparrow
- And then we need a circuit t capacitance
 - We saw earlier how to turn C
 - Can also turn C \rightarrow freq \rightarrow tim
- There are also *resistive* humic (and probably other mechanic capacitive is most common

Parameter	Conditions	Value	Units
CUTIO DU server al	typ.	±1.8	%RH
SH140 RH accuracy	max.	See Figure 2	-
	typ.	±1.8	%RH
SH141 RH accuracy	max.	See Figure 3	-
CUT12 DU	typ.	±1.8	%RH
SH143 RH accuracy	max.	See Figure 4	
	typ.	±1.0	%RH
SHT45 RH accuracy ¹	max.	See Figure 5	-
Siries Arraceutacy	long-term production ²	±0.5	%RH
	high	0.08	%RH
Repeatability ^{3, 4}	medium	0.15	%RH
	low	0.25	%RH
Resolution ⁵	-	0.01	%RH
Hysteresis	At 25 °C	±0.8	%RH
Specified range ⁶	extended ⁷	0 to 100	%RH
Response time ⁸	T 63%	4	s
Long-term drift ⁹	typ.	<0.2	%RH/y

Humidity

- SHT40 has a heater on it
- Can use it to "bake off" water on/in sensor
- For example, if
 - It got rained on and there is water in opening
 - Or you want to "reset" measurement

Ambient light sensing

- Uses
 - Common use: display dimming, etc.
- Definitions
 - Lumen: Total visible light emitted, adjusted for human sensitivity
 - So not infrared, UV light
 - Lux: Lumen/m2
 - This is an intensity
 - ~150,000 lux on a sunny day
 - ~0 lux in the dark

Light sensing

- Transduction mechanism
 - Photoresistor
 - Light → electron-hole pairs in a semiconductor → increase conductivity (change in resistance) → voltage
 - Photodiode
 - Light → electron-hole pairs in a semiconductor → current → voltage
 - Generally faster and more sensitive than photoresistor

https://www.analog.com/en/resources/technical-articles/optimizing-precisionphotodiode-sensor-circuit-design.html

Light sensing

- VEML7700
 - Photodiode-based
 - Seems to have two photodiodes
 - With two different spectral responses (probably different filters), "white" and "ambient light sensor"
 - Need to set gain and integration time for various lux levels

Fig. 1 - Block Diagram

Air velocity sensing

- Most common approach
 - Measure change in convective heat transfer
- Heater + 2 temp sensors
 - Use MEMS fabrication to thermally isolate the heater
 - Lowers power consumption

Air velocity sensing

- Thermopile
 - Series of many thermocouples
 - Each one generates a small voltage
 - Overall get larger voltage
- Renesas FS3000
 - Thermopile flow sensor
 - 3.3V @ 10 mA
 - Only one direction of flow sensing
 - \$14.47@100

Thermopile T_x T_{REF} V_{OUT} T_x T_{REF} $I_{Sothermal}$ Absorber block

Air velocity sensing

- Thermal mass sensor
 - Heat up a resistor
 - Convection cools it off
- FS7.0.1L.195
 - Heater + temp sensor
 - \$9.95 @ 50
 - 200 mW max power
 - Need to calibrate R vs. wind speed
 - Should work in most any direction

Passive infrared (PIR) sensor

- The ones in office occupancy sensors, outdoor motion-activated lights, etc.
- Really, these are *motion* sensors
- Two pixels, each sensitive to ~9.4 um infrared radiation
 - Pyroelectric sensor: certain crystalline materials convert temperature changes into voltage changes
- Uses specialized IC to convert input voltage into output pulse (upon motion)
- Lens on top has array of Fresnel lens that bring adjacent incoming solid angles to alternating pixels → system can be sensitive to small motions

Passive infrared (PIR) sensor

- The ones in office occupancy sensors, outdoor motion-activated lights, etc.
- Really, these are *motion* sensors
- Two pixels, each sensitive to ~9.4 um infrared radiation
 - Pyroelectric sensor: certain crystalline materials convert temperature changes into voltage changes
- Uses specialized IC to convert input voltage into output pulse (upon motion)
- Lens on top has array of Fresnel lens that bring adjacent incoming solid angles to alternating pixels → system can be sensitive to small motions

Passive infrared (PIR) sensor

- Cost: ~\$3 @ 1
 - Presumably cheaper in bulk from China
- Size: 20-30 mm on a side
- Power/voltage: 3 mA active, ~100 μA idle @ 3-6V
- Connectivity: 1 pin into GPIO
- Privacy: excellent

Thermal camera

- Instead of two pixels, what if we had many pixels of thermal information
- Original used bolometers: microscale (~5-10 μm on a side) thermistors that are thermally isolated from the substrate to allow small amounts of thermal radiation to cause measurable changes in R
- System includes lens, readout electronics, etc.

Teledyne FLiR

FLIR module

Note that many thermal images you see are upscaled...this sensor module only has 80x60 pixels

Array (not FLIR)

Unit cell (probably FLIR)

Thermal camera

- Thermopile array
 - Lower cost than microbolometer arrays
 - Need thermal isolation (like bolometer) so that small incident radiation results in reasonable $\Delta T \rightarrow$ reasonable ΔV

A CONTRACT OF CONT

Adafruit, based on Melexis MLX90640

Thermal camera

• Some comparisons

	Thermopile	Bolometer
Cost	\$51.28 @ 100 bare IC \$59.96 @ 100 Adafruit breakout	\$121.58 @ 1 bare module
Pixels	32 x 24	80 x 60
Size	~6 x 10 x 10 mm	~10 x 10 x 10 mm
Power	20 mA typical @ 3.3 V	150 mW active, 5 mW standby 2.8-3.1V supply
Connection	I2C	I2C
Package	32-pin package, fits into commercial socket	4-pin thru-hole package
Privacy	Excellent	Excellent

all these values need to be double-checked

Visible-light camera

- Lots of options here
 - Easy to get 1MP+ AND ESP32S3 for \$5-10
- Probably worth getting a module instead of a bare sensor
 - Avoids dealing with fine-pitch connector/cable
- Comms
 - SPI, etc.
- Power
 - ~30-100 mA depending on frame rate, etc.
 - 20 μ A in standby
 - 3.3V [camera sensor uses lower voltage, so there's on-board LDO]
- Size
 - 36 x 23 x 18 mm
- Privacy
 - Problematic need to do local processing

OV2640 sensor + ESP32-S3

Ultrasonic sensors

- Sender + receiver of ultrasound
 - Sends US pulses, measures time to return
- 40 kHz US common
- Power
 - Widely varying numbers, but typically a few mA to 10s mA @ 3.3-5V
 - Simples have no sleep/idle, but can turn off
 - 1 pin input, 1 pin output
- Cost
 - ~\$2-3/ea @ 1 up to
 - \$50/ea@1
- Distance
 - <4 m to 10m

Cheapo US sensors

Ultrasonic sensors

- Sender + receiver of ultrasound
 - Sends US pulses, measures time to return
- 40 kHz US common
- Power
 - Widely varying numbers, but typically a few mA to 10s mA @ 3.3-5V
 - Simples have no sleep/idle, but can turn off
 - 1 pin input, 1 pin output
- Cost
 - ~\$2-3/ea @ 1 up to
 - \$50/ea@1
- Distance
 - <4 m to 10m

ToF LIDAR sensors

- Optical version of US distance sensor
 - Measures time of flight of light
- Can get single-pixel versions, multi-pixel (multi-zone), ToF/LIDAR cameras

VL53L8CX 5th generation FlightSense™

Emitter

Sensor

ST Microelectronics

ToF LIDAR sensors

- Optical version of US distance sensor
 - Measures time of flight of light
- VL53L8CX
 - 8x8 SPAD array
 - 940 nm IR VCSEL laser
 - 65 degree FOV
 - 3.3V
 - 215 mW power during continuous ranging
 - I2C, SPI
 - \$5.62@100
 - Works great indoors, issues outside

VL53L8CX 5th generation FlightSense™

Table 21. Maximum ranging capabilities when ranging continuously at 30 Hz

Target reflectance level. Full FoV (reflectance %)	Zone	Dark	Ambient light (5 kLux)
	lonor	Typical 4000 mm	Typical 2850 mm
White target (88%)	Inner	Minimum 4000 mm	Minimum 2850 mm
write target (00%)	Comer	Typical 4000 mm	Typical 2850 mm
	Comer	Minimum 4000 mm	Minimum 2700 mm
	loner	Typical 4000 mm	Typical 2600 mm
	Inner	Minimum 4000 mm	Minimum 2550 mm
Light gray target (34%)	Corner	Typical 4000 mm	Typical 2500 mm
		Minimum 4000 mm	Minimum 2400 mm
	loner	Typical 4000 mm	Typical 1650 mm
Gray target (17%)	miner	Minimum 4000 mm	Minimum 1600 mm
	Comer	Typical 3950 mm	Typical 1550 mm
	Corner	Minimum 3900 mm	Minimum 1500 mm

RF/mmWave

- mmWave/RF version of US distance sensor
- Use antenna arrays to send out narrow beams of RF energy and record time of flight back
- Cost
 - \$10-40@100
- XM125
 - A module containing the A121 radar sensor
 - Includes MCU, stuff to make life easier
- A121
 - 60 GHz pulsed coherent radar
 - Human presence detection range: 7 m

RF/mmWave

- A121
 - 60 GHz pulsed coherent radar
 - 1.8 V and 3.3 V (if you want to talk to 3V3 MCU)
 - ~mA to ~10s mA depending on measurement mode
 - Includes antenna
- Pulsed coherent radar
 - Send pulses and use ToF for ranging
 - But use very good oscillator and transmitter so that the phase of the signals is controlled (*aka coherent*)
 - Allows
 - Better SNR as you integrate returned pulses
 - Phase allows detection of very small movements

US, RF, LIDAR

• They are all doing basically the same thing

- Differences will arise due to differences in
 - Transduction efficiency
 - Absorption/scattering & beam divergence
 - Reflection/absorption cross section of target