
Communications and
Networking

6.9000
Spring 2025

2/26/25 6.9000 Spring 2025 1

Send Information Between Devices
• All information is encoded using ones and zeroes

(bits)
• How to do we convey ones and zeroes between

entities?
• What things do we vary in existence to achieve this?

2/26/25 6.9000 Spring 2025 2

Device 1 Device 2
0101010001

Sending Information
• If you have 1 bit of information to send how do

you do it?

2/26/25 6.9000 Spring 2025 3

Device 1 Device 2
1 tasty bit

Sending Information
• If you have 1000 bits of information to send how

do you do it?

2/26/25 6.9000 Spring 2025 4

Device 1 Device 2
1000 juicy bits

In almost all systems

• Bits are conveyed using some mixture of:

• Energy Patterns that exist in the three
dimensions of space
• Time...the fourth dimension

• Using these four dimensions let’s us convey
information

2/26/25 6.9000 Spring 2025 5

Electromagnetic Energy Patterns in
Space

• Applying energy to Electromagnetic phenomena
proved to be the most scalable and workable
and is why Course 6 won out and Course 2 lost

• In order to make electromagnetic energy
patterns in space we need to be able to:
• Put energy in one area
• Not put energy in another area

2/26/25 6.9000 Spring 2025 6

Conductors and Insulators
• In the case of “circuits” we use variations in the

complex electric permittivity (𝜀) of different
materials to focus electromagnetic field (with
particular emphasis on the electric field).

2/26/25 6.9000 Spring 2025 7

https://www.researchgate.net/figure/Electrostatic-field-simulation-of-the-two-wire-configuration-a-Color-coded-electric-field_fig3_339076022

Convert one ability into another
• We’re really good at making

patterns of metal and not-
metal...

• Which means we can be really
good at making spatial electric
energy patterns!

• Can do it manually using wires
like a bunch of peasants
(necessary in prototyping so no
shame)

2/27/25 6.9000 Spring 2025 8

https://www.sciencebuddies.org/science-fair-
projects/references/how-to-use-a-breadboard

Convert one ability into another
• We’re really good at making

patterns of metal and not-
metal...

• Which means we can be really
good at making spatial electric
energy patterns!

• Can do it using CAD and fancy
automated material fabrication
techniques to make printed
circuit boards

2/27/25 6.9000 Spring 2025 9

Aside: PCBs are coming along!

2/27/25 6.9000 Spring 2025 10

In almost all systems

• Bits are conveyed using some mixture of:

• Energy Patterns that exist in the three
dimensions of space
• Time...the fourth dimension

• Using these four dimensions let’s us convey
information

2/27/25 6.9000 Spring 2025 11

Clock Line
(Optional)

Data Line 0

Data Line 1

Data Line 2

Data Line N

Sending Data...Using the dimensions

6.9000 Spring 2025 12

Parallel Link: Serial Link:

2/26/25

Device 1 Device 2…
Clock Line
(Optional)

Data Line 0
Device 1 Device 2

10101001100
10101010001
11110001100

10010011001

………

time

message 0

message 1
10101001100

message 0

message 1

time

What about in Wireless/Radio?

• Any particular challenges applying the ideas so
far to RF waves?

2/27/25 6.9000 Spring 2025 13

Spatial constraint in Wireless
• You can directionally focus beams, but it is very,

very hard to get the spatial resolution that we get
with wires when working in the RF space

2/27/25 6.9000 Spring 2025 14

Wavelength of EM phenomena
plays huge part here
• Wavelength is the spatial length

of a electromagnetic wave

2/27/25 6.9000 Spring 2025 15

𝜆 =
𝑐
𝑓

Wavelength
(meters)

Speed of light (300,000 km/s

frequency
(Hz or cycles per second)

Wavelength vs. spatial features

• When spatial features are much, much smaller
than the wavelength of EM phenomena involved,
it is very easy to get good spatial resolution of
our electromagnetic fields
• Meaning...
• Wires act like wires
• Insulators act like insulators
• Resistors act like resistors
• Circuit

2/27/25 6.9000 Spring 2025 16

Some Wavelengths

•1 Hz signal: 300,000,000m
•1 kHz signal: 300,000m
•1 MHz signal: 300	m
•10 MHz signal: 30	m
•100 MHz signal: 3	m
•1 GHz signal: 30	cm
•10 GHz signal: 3	cm
•100 GHz signal: 3	mm

2/27/25 6.9000 Spring 2025 17

𝜆 =
𝑐
𝑓

+
−

“DC”

“RF”

In Very High Frequencies...

• It becomes harder and harder to spatially isolate
EM signals using wires and things because stuff
just doesn’t “behave” anymore.
• The size of physical features ends up being

similar to the size of the EM wavelengths

2/27/25 6.9000 Spring 2025 18

In almost all systems

• Bits are conveyed using some mixture of:

• Energy Patterns that exist in the three
dimensions of space
• Time...the fourth dimension

• Using these four dimensions let’s us convey
information

2/27/25 6.9000 Spring 2025 19

IN RF and High Frequency...

• Energy Patterns that exist in the three
dimensions of space
• Time...the fourth dimension

• You kinda end up mixing time and space
dimensions a bit more to rely on frequencies of
the signals themselves to isolate/separate
channels of information.

2/27/25 6.9000 Spring 2025 20

Clock Line
(Optional)

Data Line 0

Data Line 1

Data Line 2

Data Line N

Data Transmission with Wires...

6.9000 Spring 2025 21

Parallel Link using Wires: Serial Link using Wires:

2/27/25

Device 1 Device 2…
Clock Line
(Optional)

Data Line 0
Device 1 Device 2

10101001100
10101010001
11110001100

10010011001

………

time

message 0

message 1
10101001100

message 0

message 1

time

Clock Line
(Optional)

Data Line 0

Data Line 1

Data Line 2

Data Line N

Data Transmission without Wires...

6.9000 Spring 2025 22

Parallel Link using frequency channels: Serial Link using
frequency channel:

2/27/25

Device 1 Device 2…
Clock Line
(Optional)

Data Line 0
Device 1 Device 2

10101001100
10101010001
11110001100

10010011001

………

time

message 0

message 1
10101001100

message 0

message 1

time

Anyways...

• Let’s talk about Wired Communication Protocols

• But while doing so, keep wireless ideas in the
back of your mind.

2/27/25 6.9000 Spring 2025 23

Clock Line
(Optional)

Data Line 0

Data Line 1

Data Line 2

Data Line N

Data Transmission with Wires...

6.9000 Spring 2025 24

Parallel Link using Wires: Serial Link using Wires:

2/27/25

Device 1 Device 2…
Clock Line
(Optional)

Data Line 0
Device 1 Device 2

10101001100
10101010001
11110001100

10010011001

………

time

message 0

message 1
10101001100

message 0

message 1

time

Parallel vs. Serial in Wires

• Parallel (not so much on individual small
devices)…mostly memory and things that need to
send data at very high rates such as a camera, high-
speed ADCs, etc…

• UART “Serial” very common

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very
common

6.9000 Spring 2025 252/26/25

SERIAL PROTOCOLS

PARALLEL PROTOCOLS

When Choose Parallel?
• When you need to transfer large amounts of data

over short distances, parallel is a better choice.
• Data Transfer Rate will scale ~linearly with number

of wires
• But Have to be careful of wiring length:
• Ensure bits arrive same time

• Uses lots of space!!!

2/26/25 6.9000 Spring 2025 26
https://docs.toradex.com/102492-layout-design-guide.pdf

Communications Trends
• Serial: good for long distance (save on cable, pin

and connector cost, easy synchronization).
Requires “serializer” at sender, “deserializer” at
receiver
• Parallel: issues with clock skew, crosstalk,

interconnect density, pin count. Used to dominate
for short-distances (eg, between chips).
• BUT for high data movement, modern

preference is for parallel, but independent serial
links (eg, PCI-Express x1,x2,x4,x8,x16) as a
hedge against link failures. Ethernet, USB, etc…
these all follow that same pattern

6.9000 Spring 2025 272/26/25

Multiple Serial Links in Parallel

6.9000 Spring 2025 28

Serial Link:

2/26/25

Data Line 0

Device 1 Device 2

10101001100
message 0

message 2

time

Clock Line 1
(Optional)

Data Line 1

10101001100
message 1

message 3

etc...

• Multiple separate serial
channels coexist.
• Generally data sent on

each channel isn’t
intricately tied together
(maybe separate
packets/message)...n
splitting bits across
multiple wires

Serial Standards
• A zillion Serial standards
• Asynchronous (no explicit clock) vs. Synchronous

(CLK line in addition to DATA line).
• Recent trend to reduce signaling voltages: save

power, reduce transition times
• Control/low-bandwidth Interfaces: SPI, I2C, 1-Wire,

PS/2, AC97, CAN, I2S,
• Networking: RS232, Ethernet, T1, Sonet
• Computer Peripherals: USB, FireWire, Fiber Channel,

Infiniband, SATA, Serial Attached SCSI
• Graphics: DVI, HDMI, DisplayPort

2/26/25 6.9000 Spring 2025 29

Common Chip-Chip Communication
Protocols
• Parallel (not super common, but exists in high speed

situations).

• UART (Universal Asynchronous Receive Transmit)
“serial” very common

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very
common

6.9000 Spring 2025 302/26/25

UART aka “Serial”

• Stands for Universal Asynchronous Receiver Transmitter
• Requires agreement ahead-of-time between devices

regarding things like clock rate (BAUD), etc…
• Two wire communication for bi-directional (or one if you

only want to talk and not listen like a bad relationship
partner)
• Cannot really share

• (every pair of devices needs own pair of lines so wires scales as
2𝑛where 𝑛 is the number of devices)

• Data rate generally < 1Mbps (though can maybe push a
little bit)
• Data sent least significant bit (lsb) first

6.9000 Spring 2025 31

TX/RX

RX/TX

Device 1 Device 2

2/26/25

TX RX

TXRX

The Naming on UART is Perpetually a
Mess with the TX/RX confusion
• When working with UART take care to pay

attention to the TX and RX pins.

• They are complementary...one device’s TX talks
to another devices RX.

• But boards and datasheets will sometimes label
things backwards

2/26/25 6.9000 Spring 2025 32

UART
• Line High at rest (“high” an “low” depend on system

specs...5V/0V...3.3V/0V, -12V/+12V...)
• Drops Low to indicate start
• 8 (or 9 bits follows) sent least significant bit first
• Goes high (stop bit)
• Can have optional parity bit for simple error correction

2/26/25 6.9000 Spring 2025 33

From
TX:

START 1 0 1 1 0 0 1 0

STO
P

To
RX:

0x8d of ’M’ in ASCII
sent lsb first!

In UART, messages must be short
(one byte)

• Both parties must agree ahead of time to a bit rate.
• A bit rate is bits per second
• Does everyone know what a second is?
• Does everyone actually know what a second is?
• What is a second?
• What are we even doing here?
• What are the implications of imperfect

synchronization?

2/26/25 6.9000 Spring 2025 34

Timing Differences
• Atomic Clocks can range from $1500 to

$200,000 depending on how good you want
them.
• If we want commodity electronics to be cheap,

$200,000 makes that hard to do.
• They must use “good-enough” local clocks and

we build up communication protocols to
accommodate for that.
• You must Synchronize your data transmission

and reception

2/26/25 6.9000 Spring 2025 35

Synchronization

2/26/25 6.9000 Spring 2025 36

From
TX:

START 1 0 1 1 0 0 1 0
STO

P

To
RX:

Receiver sees the high signal
and waits for it to fall.
From that edge it starts its
timing

TX timing:

RX timing:

• Even if the timing of the RX and TX sides
differ slightly, by keeping the messages
short, the chance of getting too far out of
sync is very, very low.

• Every new byte forces a resynchronization
so errors never get a chance to
accumulate too far!

UART and RX/TX and RTS/CTS
• UART will also sometimes come with
• “Ready to Send” signals (RTS)
• “Clear to Send” signals (CTS)

• These are Flow-Control Signals that allow the two
parties to tell each other if they have data to send if
they are ready to receive data

2/26/25 6.9000 Spring 2025 37

TX/RX

RX/TX

Device 1 Device 2

TX RX

TXRX

RTS
RTS/CTS

CTS

RTSCTS
CTS/RTS

UART Transmission

2/26/25 6.9000 Spring 2025 38

From TX:

START 1 0 1 1 0 0 1 0

STO
P

To RX:

• RTS and CTS sit high. Each device in charge of
setting the RTS and listening to the CTS
• Device pulls RTS low. Other device sees that and

then pulls its CTS low in response

RTS

CTS

Receiving Device

Transmitting Device

“I have data to give”

”Give me your data. I am ready.”

Data will not start until “handshake” has happened

UART Thoughts? Goods? Bads?

• Everything contained within one wire for the
most part?

• Not super fast

2/26/25 6.9000 Spring 2025 39

Data Synchronization

• In UART, small data bursts with periodic
resynchronizations are needed to make sure
both parties produce and read data at the same
time.

• How else to do this?

2/26/25 6.9000 Spring 2025 40

Common Chip-Chip Communication
Protocols
• Parallel (not super common, but exists in high speed

situations).

• UART (Universal Asynchronous Receive Transmit)
“serial” very common

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very
common

6.9000 Spring 2025 412/26/25

Note on Terminology
• Master/Slave terminology is heavily used in SPI and

I2C...Master controls a bus, Slave listens.
• Acknowledge the issues with it, but also because

many datasheets/vendors still use it, it is hard for us
to separate from it completely.
• Changing slowly
• Maybe use ”Main”/”Secondary” to keep the letters the

same or ”Controller” and “Peripheral”
• Also seeing SDO/SDI for “Serial Data Out/In” with

respect to controlling device more recently

6.9000 Spring 2025 422/26/25

SPI

• Stands for Serial-Peripheral Interface
• Four Wires:
• COPI: Controller-Out-Peripheral-In…
• CIPO: Controller-In-Peripheral-Out…
• SCK: Serial Clock
• CE/CS (Chip Enable or Chip Select)

• SCK removes need to agree ahead of time on data rate
(from UART)…makes data interpretation much easier!
• High Data Rates: (1MHz up to ~70 MHz clock (bits))
• Data msb or lsb first…up to devices

6.9000 Spring 2025 43

COPI
CIPOController

Device
Peripheral

DeviceSCK
CE/CS

2/26/25

MOSI also = SDO “serial data out”
MISO also SDI “serial data in”
Also seeing now:
COPI = Controller Out Peripheral In
CIPO = Controller In Peripheral Out

SPI Expansion

• Can share COPI/CIPO Bus so the wire
requirement scales as 3 + 𝑛 where 𝑛
is the number of devices
• Addition of multiple secondaries

requires additional select wires
• Hardware/firmware for SPI is pretty

easy to implement:
• Wires are uni-directional
• Classic “duh” sort of approach to digital

communication, but very robust.

6.9000 Spring 2025 44

COPI
CIPOController

Device
Peripheral
Device 1SCK

CE0/CS0

CE1/CS1

2/26/25

Peripheral
Device 2

SPI Example

6.9000 Spring 2025 45

…

SCK

CS Here I am talking to a MCP3008 10 bit ADC

X X 1 1 0 0 1 X X X X X X X X X X X X X
COPI/MOSI

X X X X X X X X 0 0 0 0 1 0 1 1 0 1 1
CIPO/MISO

CMOD-A7-35T
MCP3008

From MCP3008 Datasheet

2/26/25

MCP3008 is a 8-channel 10 bit Analog
to Digital Converter from Microchip
Semi that communicates over SPI

Sends its data msb first

Not all devices do this
(must check datasheet)

SPI Example

6.9000 Spring 2025 46

…

SCK

CS

X X 1 1 0 0 1 X X X X X X X X X X X X X
COPI/MOSI

X X X X X X X X 0 0 0 0 1 0 1 1 0 1 1
CIPO/MISO

MCP3008 (Peripheral/Secondary Device) Dialog

(Controller/Main Device) Dialog

“Hey MCP3008”
“0001011011”

“Give me a
single-ended
reading…” “From your

channel 1”
”We’re done
here. ”

2/26/25

X means don’t care as in
could be 1 or 0

Come from datasheet

SPI In Real Life
• Here I am talking to the

same chip I was
daydreaming about talking
to on the previous slide.

• Dreams do come true

• I’m saying, “give me your
measurement on Channel
1,” and it is responding
with “10’b0001011011”
mapped to 3.3V or 0.293 V

6.9000 Spring 2025 47

CS

SCK

COPI

CIPO

11001000001011011

2/26/25

REMINDER: Digital In Analog Life
vs Digital in Digital Life
• What noise? I don’t care about noise (within reason)

2/26/25 6.9000 Spring 2025 48

Logic Analyzer Capture of SPI
transaction

Oscilloscope Analog Capture of
different SPI transaction

D/C
RES

SPI Variations
• Six Wires:

• COPI: Controller-Out-Peripheral-In
• CIPO: Controller-In-Peripheral-Out
• SCK: Clock
• CE/CS (Chip Enable or Chip Select)
• RES: Reset Device
• D/C: Data/Command (often seen in devices

where you need to write tons of data (i.e. a
display)

• Three/Two Wires:
• If a device has nothing to say, drop CIPO:
• If you assume only one device on bus drop

CE/CS, so only have SCK and COPI,
sometimes just called “DO” (for data out) in
this situation

6.9000 Spring 2025 49

COPI
CIPO

Controller
Device

Peripheral
Device

SCK
CE0/CS0

2/26/25

Twitch Streamer LEDs:

LCD Display:

Other SPI Variations

• QSPI: “Quad SPI”

• This is basically SPI...
• But there will be four data transfer pins instead

of one
• See in a lot of flash memory chips
• This really isn’t “Serial” in the way God meant it

though...the bits are usually sampled together so
it is a parallel data transfer just poorly named

2/26/25 6.9000 Spring 2025 50

COPI

CIPO[0]

Controller
Device

Peripheral
Device

SCK
CE0/CS0

CIPO[1]

CIPO[2]

CIPO[3]

Other SPI Variations

• 8SPI: “Octal SPI”

• This is basically SPI...

• ...

• But there will be eight data transfer pins instead of
one
• See in a lot of weird hybrid RAM chips
• Again if this isn’t parallel data transmission, I don’t

know what is...but it is called SPI
2/26/25 6.9000 Spring 2025 51

COPI

CIPO[0]

Controller
Device

Peripheral
Device

SCK
CE0/CS0

CIPO[1]

CIPO[2]

CIPO[3]

CIPO[4]

CIPO[5]

CIPO[6]

CIPO[7]

SPI Conclusions

• It is a very simple and very robust ”idea” of a
protocol.

• The simplicity comes at the expense of any wires

• And often...some of the complexity is
deferred...There are many variations and dialects
of it, so you should always always always read
the datasheet for these things.

2/26/25 6.9000 Spring 2025 52

Be careful! Read Datasheets

• A bit screw-up
point is mixing up
clock
polarity...someti
mes data is
sampled on
rising
edge...others on
falling edge

2/26/25 6.9000 Spring 2025 53

• Clock level at idle can also matter sometimes

SPI Upsides?

• Simple to Implement

• Capable of Very High Speeds (50 MHz is not rare
for some displays)

2/26/25 6.9000 Spring 2025 54

SPI Downsides?

• A lot of wires...which might seem like nbd, but in
reality pincount is a huge cost factor in chip
manufacture...tons of economic pressure to
minimize this.

• At very high speeds it actually gets really noisy
especially QSPI or OSPI

2/26/25 6.9000 Spring 2025 55

Common Chip-Chip Communication
Protocols
• Parallel (not super common, but exists in high speed

situations).

• UART (Universal Asynchronous Receive Transmit) very
common

• SPI (Serial Peripheral Interface) very common

• I2C (Inter-Integrated Circuit Communication) very
common

6.9000 Spring 2025 562/26/25

I2C
• Stands for Inter-Integrated Circuit

communication
• Invented in 1980s
• Two Wire, One for Clock, one for data...Both

wires are technically bidirectional, meaning each
side can use them
• Usually 100kHz or 400 kHz clock (newer versions

go to 3.4 MHz)

6.9000 Spring 2025 57

SDA

SCL

Controller
Device

Peripheral
Device

2/26/25

On i2C Multiple Devices Require
Same # of Wires
• Devices come with their own ID

numbers (originally a 7 bit value
but more modern ones have 10
bits)…allows potentially up to 27

devices or 210 on a bus
(theoretically anyways)

• ID’s are specified at the factory*,
usually several to choose from
when you implement and you
select them by pulling external
pins HI or LOW

6.9000 Spring 2025 58

SDA

SCL

Controller
Device

Peripheral
Device 1

2/26/25

Peripheral
Device 2

*sometimes programmable

I2C
• Only two wires…one used for synchronizing data

and one used for conveying data in both
directions:
• Controller à Peripheral
• Peripheral à Controller

6.9000 Spring 2025 592/26/25

• And also you need to let
multiple devices possibly
speak and listen…
• There’s a lot here…
• It needs more complicated:
• Hardware
• Communication Protocols

SDA

SCL

Controller
Device

Peripheral
Device 1

Peripheral
Device 2

Bi-Directional Communication

• Hey those arrows are going both ways...how
does that work?

2/27/25 6.9000 Spring 2025 60

SDA

SCL

Controller
Device

Peripheral
Device

How Do Digital Electronics Set Voltages on
a Line?

2/27/25 6.9000 Spring 2025 61

VDD

VIN

NFET

PFET

VOUT

• We use CMOS Logic

• A pair of
complementary
transistors that can
alternately connect
and isolate from VDD
and Ground

Put 1 on output?

2/27/25 6.9000 Spring 2025 62

VDD

VIN

VOUT

• Low input

• PMOS conducts

• NMOS no conduct

1

0

𝑰

conducts

doesn’t
conduct

Put 0 on output?

2/27/25 6.9000 Spring 2025 63

VDD

VIN

VOUT

• High input

• PMOS no conducts

• NMOS conduct

1

0
𝑰

conducts

doesn’t
conduct

How Do Digital Electronics Listen
to Voltages on a Line?

2/27/25 6.9000 Spring 2025 64

• Some sort of buffer

• Its input takes very little
power/current from the
line

• A quiet, ideal observer

So in Unidirectional
Communication Schemes...

2/27/25 6.9000 Spring 2025 65

VDD

VIN

NFET

PFET

Vchannel

I Set the voltages

I read the voltage

What about if two or more devices want to
use one common wire to communicate?

2/27/25 6.9000 Spring 2025 66

• Sounds like socialism...can’t have that...it’ll be
a mess and none of the transistors will ever
want to work...

• jkjk

• But seriously electrically you have a problem...

What about if two or more devices want to
use one common wire to communicate?

2/27/25 6.9000 Spring 2025 67

• Electrically you have a problem...

VDD

VIN

NFET
OFF

PFET
ON

I Set the voltage to 1 VDD

VIN

NFET
ON

PFET
OFF

And I Set the
voltage to 0

SHORT
CIRCUIT

CURRENT
NOT GOOD

What Do You Do in Times of Conflict?

2/27/25 6.9000 Spring 2025 68

• You dig your heels in and waste tons of energy.
Screw the other transistor. The correct answer is
1, not 0...everyone on r/1 agrees with me 1News
Comment section backs me up.

• jkjk

• You come up with some compromises...everyone
gives a little bit...everyone gets a little bit

• Each side gives up a transistor

Before We Had This...

2/27/25 6.9000 Spring 2025 69

VDD

VIN

NFET

PFET

VOUT

Now We Have This...

2/27/25 6.9000 Spring 2025 70

VIN

NFET

VOUTCall th
is ”Open Drain” since the

drain terminal of th
e tra

nsistor

connects nowhere

Vout is either Low

Now We Have This...

2/27/25 6.9000 Spring 2025 71

VIN

NFET

VOUT

• Vout is either?????

• 0 (when transistor conducts)

• “HiZ”...basically electrically undefined (when transistor does
not conduct)

Now Connect up two of these circuits...

2/27/25 6.9000 Spring 2025 72

VIN

NFET

VOUT

VIN

NFET

• Yeah...what does this give us?
• Each side can make a 0 by activating its transistor
• Can each side make a 1? NO

Bring in an Ombuds Component

2/27/25 6.9000 Spring 2025 73

VIN

NFET

VOUT

VIN

NFET

• Each side can make a 0 by activating its transistor
• We use a neutral third-party component, trained in

conflict mediation to give us 1.

VDD

Common Pull-Up Resistor

2/27/25 6.9000 Spring 2025 74

VIN

NFET

VOUT

VIN

NFET

• Prevents the Possibility of Short Circuits Always must go
through this resistor (choose size to limit current)
• End up choosing several Kohms usually to keep current

below 1mA
VDD

RPU

Result each side has this:

6.9000 Spring 2025 75

Measure
Buffer

Vcontrol

RPU

Vdd

2/27/25

• If you want to say ”0”, you activate your transistor
• If you want to say ”1”, you inactivate your transistor and let

resistor pull you up
• If you also want to listen you inactivate your transistor and

monitor the line voltage

As a result:

6.9000 Spring 2025 76

Mode Controller Peripheral
Controller Transmit HiZ (HI) or LOW HiZ (listening)
Peripheral Transmit HiZ (listening) HiZ (HI) or LOW

Measure
Buffer

Vcontrol

RPU

Vdd

2/27/25

Measure
Buffer

Vcontrol

Controller Peripheral

So in Deployment...
• i2C uses an open drain
• Meaning both Controller and Peripheral Device are

either:
• LOW
• “High-Impedance”

• Need external pull-up resistors on both parts of I2C
to make it work

6.9000 Spring 2025 77

4.7kΩ

3.3V

SDA

SCL

3.3V

4.7kΩ

These resistors are large reason why data rate is so low!

2/26/25

Controller
Device

Peripheral
Device

Common Pull-Up Resistor

2/27/25 6.9000 Spring 2025 78

VIN

NFET

VOUT

VIN

NFET

• We choose the pull up resistors to be in the K range
usually to keep current/power down.
• This has the downside that parasitic capacitances lead

to relatively large time constants in charging/discharging
the line VDD

𝐶! represents the
parasitic capacitance

Cp

RPU approx few KOhms

So in Deployment...
• So with all this together...we can see that there needs

to be a lot more order in how to use the I2C
wires...things pull double-duty depending on context.

6.9000 Spring 2025 79

4.7kΩ

3.3V

SDA

SCL

3.3V

4.7kΩ

These resistors are large reason why data rate is so low!

2/27/25

Controller
Device

Peripheral
Device

i2C Operation
• Data is conveyed on SDA (Either from Main or

Secondary depending on point during
communication)
• SCL is a 50% duty cycle clock
• SDA generally changes on falling edge of SCL

(isn’t required, but is a convenient marker for
targeting transitions)
• SDA sampled at rising edge of SCL
• Main is in charge of setting SCL frequency and

driving it
• Data is sent msb first

6.9000 Spring 2025 802/26/25

Notice how much more rigid this

is compared to SPI

Meanings I: (Start, Stop, Sampling)

6.9000 Spring 2025 81

SCL:

SDA:

Controller Claims Bus (START)
By pulling SDA LOW while SCL is HIIdle State

SDA and SCL sit HI

Data from SDA sampled @ posedge of SCL

Data/State on SDA transitions
@ falling edge of SCL

Controller Releases Bus (STOP)
By pulling SDA HI while SCL is HI

HI

LO

HI

LO

2/26/25

Meanings II Address
• First thing sent by Controller is 7 bit address (10

bit in more modern i2C…don’t worry about that)

• If a device on the bus possesses that address, it
acknowledges (ACK=0/NACK=1) and it becomes
the secondary for the time being.

• All other devices (other than
Controller/Peripheral Devices) will ignore until
STOP signal appears later on.

6.9000 Spring 2025 822/26/25

Meanings III (Read/Write Bit)
• After sending address, a Read/Write Bit is

specified by Controller on SDA:
• If Write (0) is specified, the next byte will be a register to

write to, and following bytes will be information to write
into that register
• If Read (1) is specified, the Peripheral Device will start

sending data out, with the Controller Device
acknowledging after every byte (until it wants data to
not be sent anymore)

6.9000 Spring 2025 832/26/25

Meanings IV (ACK/NACK)
• After every 8 bits, it is the listener’s job to

acknowledge or not acknowledge the data
just sent (called an ACK/NACK)
• Transmitter pulls SDA HI and listens for next

reading the next time SCL transitions high:
• If LOW, then receiver acknowledges data
• If remains HI, no acknowledgement

• Transmitter/Receiver act accordingly

6.9000 Spring 2025 842/26/25

Meanings V
• For Controller Device to write to Peripheral Device:

• START
• Send Device Address (with Write bit)
• Send register you want to write to
• Send data…until you’re satisfied, doing ACK/NACKs along the way
• STOP

• For Controller Device to read from Peripheral Device a common (though not universal
procedure) is:
• START
• Send Device Address (with Write bit)
• Send register you want to read from (think of this like setting a cursor in the register map)
• ReSTART communication
• Send Device Address (With Read bit)
• Read the bits (it’ll start from where the cursor was left pointing at)
• After every 8 bits, it is Controller’s job to ACK/NACK Peripheral…continued

acknowledgement leads to continued data out by Peripheral.
• Not-Acknowledge says “no more data from Peripheral”
• STOP leads to Controller ceasing all communication

6.9000 Spring 2025 852/26/25

MPU-9250
• 3-axis Accelerometer (16-bit readings)
• 3-axis Gyroscope (16-bit readings)
• 3-axis Magnetic Hall Effect Sensor (Compass) (16 bit readings)
• SPI or I2C communication (!)…no analog out
• On-chip Filters (programmable)
• On-chip programmable offsets
• On-chip programmable scale!
• On-chip sensor fusion possible (with quaternion output)!
• Interrupt-out (for low-power applications!)
• On-chip sensor fusion and other calculations (can do orientation

math on-chip or pedometry even)
• So cheap they usually aren’t even counterfeited! J
• Communicates using either I2C or SPI

6.9000 Spring 2025 86

Board: $5.00 from Ebay
Chip: $1.00 in bulk

2/26/25

Implementing i2C on FPGA with
MPU9250:
• Made Controller i2C module in Verilog
• Used MPU9250 Data sheet: 42 pages (basic

functionality, timing requirements, etc…)
• MPU9250 Register Map: 55 pages

6.9000 Spring 2025 872/26/25

6.9000 Spring 2025 88

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010 …
SCL

SDA

2/26/25

Communication Part

SDA

SCL

VCC

GND

Nexys4

MPU9250

Can also do this on our current board

6.9000 Spring 2025 89

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010 …
SCL

SDA

2/26/25

Communication Part

SDA

SCL

VCC

GND

Nexys4

MPU9250

Can also do this on our current board

Needs a dialogue

6.9000 Spring 2025 90

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010

Nexys4 MPU9250

Device Address (0x68)
Write=0

Acknowledge=0

Device Register (0x3B)

Acknowledge=0

Device Address (0x68)

Read=1

Data Read InStart

…
SCL

SDA

C
ontroller AC

K

ReStart

2/26/25

Communication Part

SDA

SCL

VCC

GND

Nexys4

MPU9250

Communication Part

6.9000 Spring 2025 91

1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 0 0

01010101010101010101010101010101010101110101010101010101010101010101010101010

SDA

SCL

VCC

GND

Nexys4

MPU9250

…
SCL

SDA

“I claim this bus”

“Hey, 0x68…”

“I wanna tell
you something”

“ACK I’m here.
Sounds good”

“Look at your
0x6B register”

“ACK
OK”

“Different thought”

“Hey, 0x68…”

“Read to me
from where
 you’re looking”

“ACK
For
sure”

“0x6D”

”ACK…
More, please”

MPU9250 (Peripheral Device) DialogNexys4 (Controller Device) Dialog

2/26/25

Communication in Real-Life:

6.9000 Spring 2025 92

Data being sent from MPU9250

Triggered on leaving IDLE state

SCL = Purple

SDA = Yellow

2/26/25

Data being sent to MPU9250

Running and reading X acceleration:

6.9000 Spring 2025 93

16’hFD88 = 16’b1111_1101_1000_1000 (2’s complement)
Flip bits to get magnitude: 16’b0000_0010_0111_0111
=-315
Full-scale (default +/- 2g)
-315/(2**15)*2g = -0.02g J makes sense

16’h4088 = 16’b0100_0000_1000_1000 (2’s complement)
Leave bits to get magnitude: 16’b0100_0000_1000_1000
=+16520
Full-scale (default +/- 2g)
-16520/(2**15)*2 = +1.01g J makes sense!

Horizontal: Vertical:

HOOKUP

2/26/25

Clock-Stretching (Cool part of i2C!!!)

• Normally Controller drives SCL, but since Controller
drives SCL high by going hiZ, it leaves the option
open for Peripheral to step in and prevent SCL from
going high by pulling SCL LOW

6.9000 Spring 2025 94

SCL:

Main wanted to pull SCL HI but
Secondary prevents by pull LOW

(red never happens)

Once Secondary goes HiZ again,
Main picks back up on SCL

• Allows Peripheral a way to buy time/slow down things (if it
requires multiple clock cycles to process incoming data and/or
generate output)

2/26/25

I2C Can Also Be a “Multi-Controller” Bus

• In SPI, there is a pre-determined device in
charge of the system. I2C is potentially much
more egalitarian

6.9000 Spring 2025 95

• Devices can be design to yield based on who claims a bus
first…but you have to be careful…what if two devices claim a bus
at the same time…potential problems? Can get bus contention
so need to be careful

2/26/25

SDA:

Controller Claims Bus (START)
By pulling SDA LOW while SCL is HIIdle State

SDA and SCL sit HI

Controller Releases Bus (STOP)
By pulling SDA HI while SCL is HI

HI

LO

Compare and Contrast?
• Generally the fewer the wires the more rigid the

protocol
• SPI can be very flexible and high speed (have

only 10 bits to send? No problem…send
10!...can’t do that do that with i2C…need to zero-
pad up to the next full byte (16 bits)
• In terms of implementation, generally with

communication protocols, the more wires, the
easier the protocol/less overhead

6.9000 Spring 2025 962/26/25

Which to Choose?
• SPI is generally easier and more flexible to

implement, but only certain devices use it since it
takes up a lot of pins (and pins are expensive/limited)
• ”Slow” and “Fast” data rates are relative too…i2C is

not as much of a compromise now as it was fifteen
years ago, particularly with high-speed i2C (or even
now that 400 kHz rates are common)
• Remember, these are all meant for chip-to-chip

communications!
• Check out the example i2C code from this lecture for

the IMU…see if you can add clock-stretching! (not
required)

6.9000 Spring 2025 972/26/25

