PRODUCT & SYSTEM DESIGN

PERSPECTIVES FROM A DESIGN ENGINEER

BOSE

MARK BERGERON 02.27.24

Introduction

> 25 years of product development experience

- Naval Undersea Warfare Center

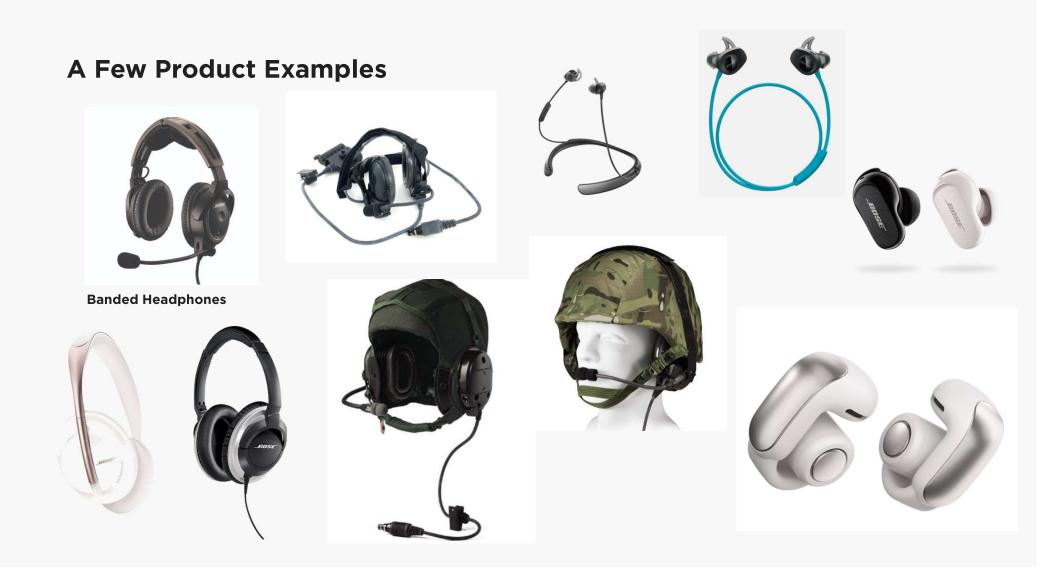
Mechanical Design Engineer/Analyst

Exercise Torpedos / Countermeasure sub-systems / Shock&Vibration

- Bose Corporation

Mechanical Design Engineer

Program Manager

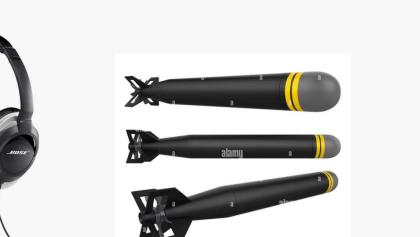

Product Architect / Lead System Engineer

Research Team Leader (ANR Sub-System)

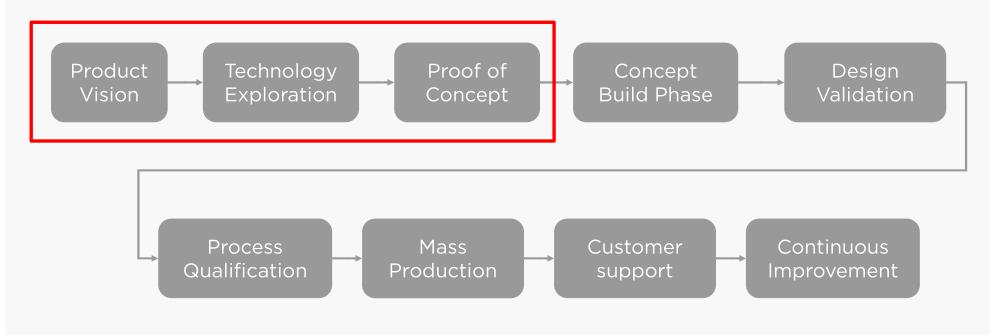
Category Lead System Engineer

BSME University of Rhode Island

MSME Worcester Polytechnic Institute - Dynamics and Vibrations


A Few Product Examples

Product Development


Expectation

Basic Development Process

Product and System Design Fundamentals to Help Get off to a good start !

Product and System Design Fundamentals

01 | Requirements Management

Understand What Customer is Asking for Convert to Engineering Requirements (System and Component) Map out "How to Know When You've Succeeded" (How/What to Measure) Track It !

02 | Design Approach - Getting Started

System Partitioning Develop Integration Plans (Dependencies, What comes first/second) Execution Cycles (Design, Build, Test)

03 | Tradeoffs

Identify Conflicts / Possible Friction Points Best Practices Decision Tools Examples

04 | Real Life Examples

Product and System Design Fundamentals

01 | Requirements Management

Understand What Customer is Asking for Convert to Engineering Requirements (System and Component) Map out "How to Know When You've Succeeded" (How/What to Measure) Track It !

02 | Design Approach - Getting Started

System Partitioning Develop Integration Plans (Dependencies, What comes first/second) Execution Cycles (Design, Build, Test)

03 | Tradeoffs

Identify Conflicts / Possible Friction Points Best Practices Decision Tools Examples

04 | Real Life Examples

O1 Requirements Management

High Level Customer Facing Needs / Goals (THE WHAT)

MITOS

- It should measure the local weather, at least temperature and humidity and ideally also sun exposure and ground surface temperature and air pressure, all with dynamics appropriate for the use case.***
- It should be able to measure how many people are in the area passing through (e.g., foot traffic) and lingering.***
- 3. It should operate without being connected to line voltage. ***
- It should be portable and able to be set up by an average person in a variety of outdoor environments on the MIT campus, including on a tripod or attached to poles of various dimensions.***
- 5. It should be able to be physically attached to a HOBO MX2302A data logger.*
- 6. It should report faults, such as battery failure, falling, vandalism, etc.**
- 7. It should be as inexpensive as possible. *
- 8. Data from a sensor node should be able to be tied to a location.***
- 9. It should maintain privacy. ***
- 10.It should operate independently without user intervention for 2+ weeks.***
- 11.It should be rugged and able to withstand a summertime Boston-area environment (heat, rain, wind and curious people). ***
- 12. Multiple systems should be able to be used simultaneously. ***
- 13.The system should present the information on a dashboard (with real-time data outputs to a dashboard if possible), and also allow downloading of raw data.***

Mostly the same ... could make one overall system, or two slightly different systems

Sentimet

Miami-Dade

- It should measure the "heat experience" at each bus stop, at least temperature and humidity, but also could include air quality, all with dynamics appropriate to the use case.***
- It should be able to measure how many people are waiting, and for how long.***
- 3. It should operate without being connected to line voltage. ***
- 4. It should be installable by a technician, and should be easy to set up.***
- 5. It should report faults, such as battery failure, falling, vandalism, etc.**
- 6. It should be as inexpensive as possible. *
- 7. Data from a sensor node should be able to be tied to a location.***
- 8. It should maintain privacy. ***
- It should operate independently without user intervention for at least a month.***
- 10.It should be rugged and able to withstand shipping, setup, and operation in the Miami-Dade environment. ***
- 11. Multiple systems should be able to be used simultaneously. ***
- 12. The system should incorporate data from Swift.ly and present that information to the operator in a useful way. ***

Size <= AHX
 Dual Volume Control

Write Them Down !!

- a. Thumb Wheels analog potentiometers b. Independent I. & R
 - b. Independent L & K

Control Module Requirements:

- c. 12dB range (same as AHX)
- d. By-pass controls and set volume to max when no power (passive)

Make sure you understand what is desired Understand Priorities (Need vs Would Like)

- e. Knobs need to be protected from inadvertent <u>operation</u> f. Knobs need to be able to be used in tandem or independently (closer
- together than AHX)
- g. There needs to be visual indication of volume level of each channel
- (numbers on wheels, ramp/wedge)
- 3. Auto-off is required (same method as current AHX)
- 4. Indication of battery life (fuel gage)
- a. Similar to AHX 3 levels minimum
- b. Colors, # of lights, placement are <u>TBD but</u> WL can copy AHX for now.
 5. Dual Power supply
- a. Install version will be able to be powered from either batteries or panel.
- 6. Aux jack for audio only no cell
 - a. Only for headphone interface
 - b. Inactive in no-power mode make it prohibitive
- 7. Prioritization
 - a. ICS over audio jack
 b. Over-ride switch location TBD (UI) Dip or on main control
 - c. No priority for blue tooth
- Auto-sense stereo / mono
- a. Need override switch
 - b. Need traditional switch as well for passive operation and when overiride is
 - on

O1 Requirements Management

Convert to Engineering Requirements (THE HOW)

Customer Need:

Best-in-Class Audio Quality

Engineering/System Requirements:

- 1. Frequency Response matches Bose target within 2dB
- 2. Maximum Loudness must be 97dBA-100dBA
- 3. Noise Floor must be less than 28dBA
- 4. Linear THD levels must be less than -40dB
- 5. Non-linear THD levels must be less than -20dB
- 6. No noise greater than -60dB during frequency sweep
- 7. No audible pop or click during state changes

Component Req Speaker:

- 1. 40mm diameter speaker
- 2. R=32+/1 Ohms
- 3. Sensitivity 110 +/- 3 dBSPL/V
- 4. THD < 1%

• • •

...

Component Req Output Amplifier :

- 1. Ripple/Noise <
- 2. THD <
- 3. Output Voltage

01 Requirements Management

Convert to Engineering Requirements (THE HOW)

Customer Need:

What happens when it's something new / no clear line to engineering requirements ?

Use Benchmarking

Find products doing something similar - even if it is for a different purpose or function

Use them in the real world and characterize what you can in the lab Develop a sense for what may be important Develop your own ideas for other objective measurements

Plan on less conventional metrics for success Field testing, Subjective Evaluations to tie back to objective measurements

O1 Requirements Management

Define How you Measure Success (THE HOW cont.)

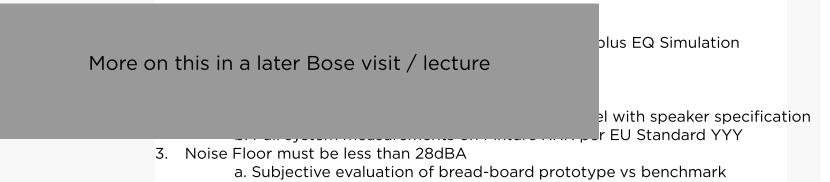
Engineering/System Requirements:

- 1. Frequency Response matches Bose target within 2dB
- 2. Maximum Loudness must be 97dBA-100dBA
- 3. Noise Floor must be less than 28dBA

...

Engineering/System Requirements:

- 1. Frequency Response matches Bose target within 2dB
 - a. Raw Acoustic Measurements on Fixture XXX plus EQ Simulation
 - b. Full system measurements on Fixture XXX
 - c. Subjective Evaluation
- 2. Maximum Loudness must be 97dBA-100dBA
 - a. Simulated system output using acoustic model with speaker specification
 - b. Full system measurements on Fixture XXX per EU Standard YYY
- 3. Noise Floor must be less than 28dBA
 - a. Subjective evaluation of bread-board prototype vs benchmark
 - b. Full system measurements on Fixture ZZZ per procedure 123

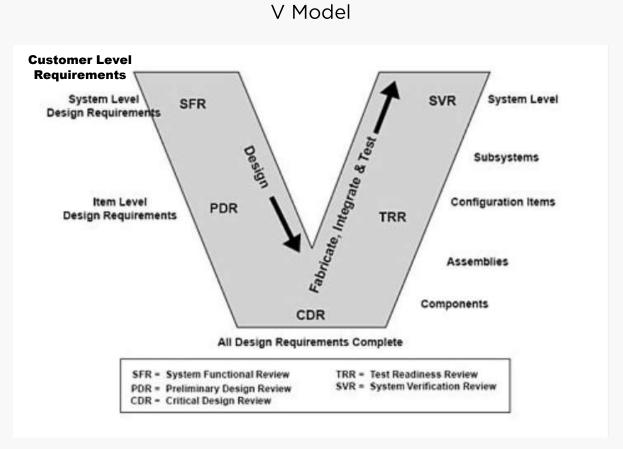

O1 Requirements Management

Define How you Measure Success (THE HOW cont.)

Engineering/System Requirements:

- 1. Frequency Response matches Bose target within 2dB
- 2. Maximum Loudness must be 97dBA-100dBA
- 3. Noise Floor must be less than 28dBA

Engineering/System Requirements:



b. Full system measurements on Fixture ZZZ per procedure 123

01 Requirements Management

			Tra	acl	< it	:! (T٢	ΗE	Н	NС	/ c	ont.)	
A	В	С		E		G	Meth			K Docum		М	
2 Req. Para. #	Requirement REQUIREMENTS	Insp. Para. #	Pass	Fail	Unkn	FAT	Engr	Sim	Insp	Yes	No	Notes	
21	The talk-through circuit shall provide at least 240 hours transmission in a 90 dB, 1 KHz noise field using a fresh battery.		X			Х				Х			Compliance:
22 3.2.4	Acoustical Characteristics	N/A											Pass
23 3.2.4.1	Frequency Response In the Intercom or Low Power Mode, with the headset mounted on a simulated real head fixture (mannequin), the headset at 22°C, 50% RH shall produce an acoustic frequency response that fits within the limits identified in Figure 1 of PRFA3261202 when driven by a -10 dBV input audio signal when measured in 1/3 octave frequencies between 300 Hz and 4500Hz and corrected for the diffuse	4.2.3.4.1.1	x				x	x	X	x		Test method similar to FAT methods, t different equipment used	Fail Unknown
24	field response of the fixture. In the Unpowered Mode, the headset at 22°C, 50% RH shall produce an acoustic frequency response that fits within the limits identified in Figure 1 of PRFA3261202 when driven by a -10 dBV input audio signal when measured in one octave frequencies between 300 Hz and 4500Hz and corrected for the diffuse field response of the			X			x			x		Test method similar to FAT methods, b different equipment used	Formal Test
26 3.2.4.2	Output Level	4.2.3.4.1.2				aaada	ssat						Eng Eval
27	The headset at 22°C, 50% RH shall produce an output level of 106 ± 3dB SPL corrected for the diffuse field response of the fixture for a 0 ± 0.1 dBV input audio signal at 500Hz when in either the Intercom or Low Power Mode.		Х		X		X	X		х		Test method similar to FAT methods, b different equipment used	Simulation/Analysis
28	With the headset in the Unpowered Mode, the output level shall be 94 ± 4 dB SPL corrected for the diffuse field response of the fixture in the octave around 500 Hz for a 0 ± 0.1 dBV input audio signal.	-	х		X		X	Х		x		Test method similar to FAT methods, b different equipment used	Inspection / Subjective
29 3.2.4.3	Harmonic Distortion	4.2.3.4.1.3											
30	The harmonic distortion of the earphone assembly in Low Power and Intercom Modes shall not exceed 5% for a 0 \pm 0.1dBV input at 500 Hz and it shall not exceed 10% with the input adjusted for an output of 100 dB SPL at 500 Hz and then swept from 300 Hz to 4500Hz.		Х			Х	X	Х		Х			Documented: Yes
	The harmonic distortion of the earphone assembly in Unpowered Mode shall not exceed 5% for a -6 ± 0.1dBV input at 500 Hz and it shall not exceed 10% with the input adjusted for an output of 94 dB SPL at 500 Hz and then sweet from 300 Hz to 4500 Hz.		Х			Х	X	x		Х			No
31 32 3.2.4.4	Earphone Linearity	4.2.3.4.2.4											
33	From an initial output of 85dB SPL, the output shall remain linear to within ± 2dB for an increase in input of 10 ± 0.1dB and ±3dB for an increase in input of 20 ± 0.1dB.	4.2.3.4.2.4	X		X			X				Design analysis based on prior art	

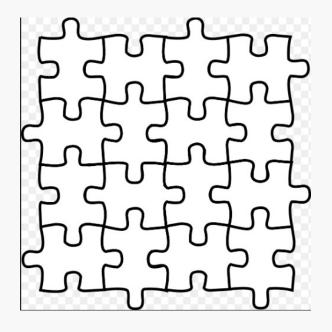
O1 Requirements Management

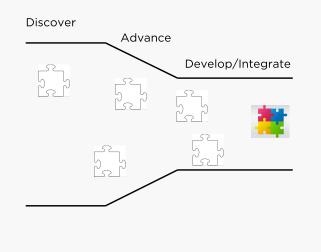
Product and System Design Fundamentals

01 | Requirements Management

Understand What Customer is Asking for Convert to Engineering Requirements (System and Component) Map out "How to Know When You've Succeeded" (How/What to Measure) Track It !

02 | Design Approach - Getting Started

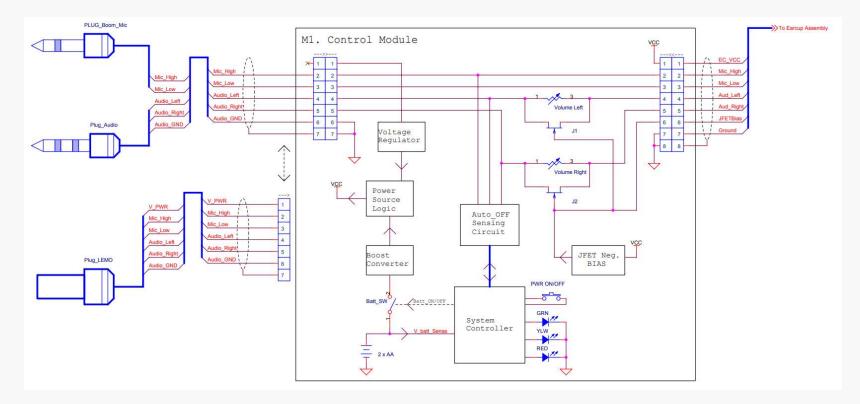

System Partitioning Develop Integration Plans (Dependencies, What comes first/second) Execution Cycles (Design, Build, Test)

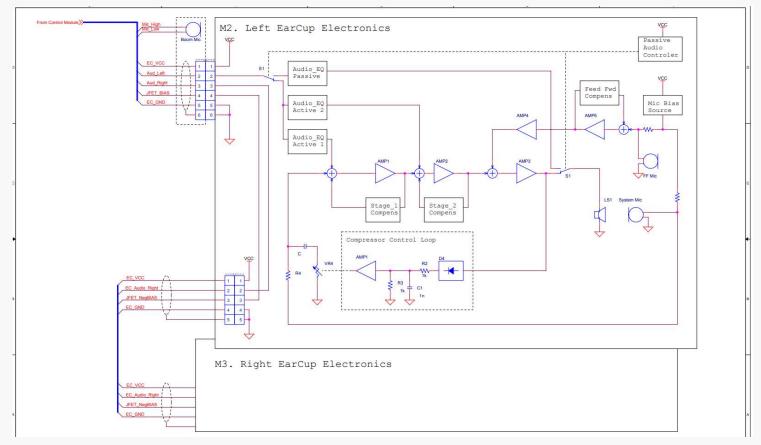

03 | Tradeoffs

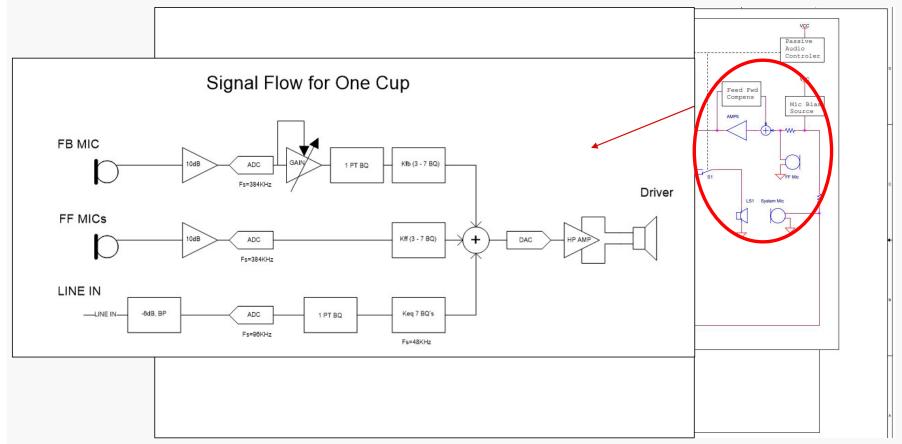
Identify Conflicts / Possible Friction Points Best Practices Decision Tools Examples

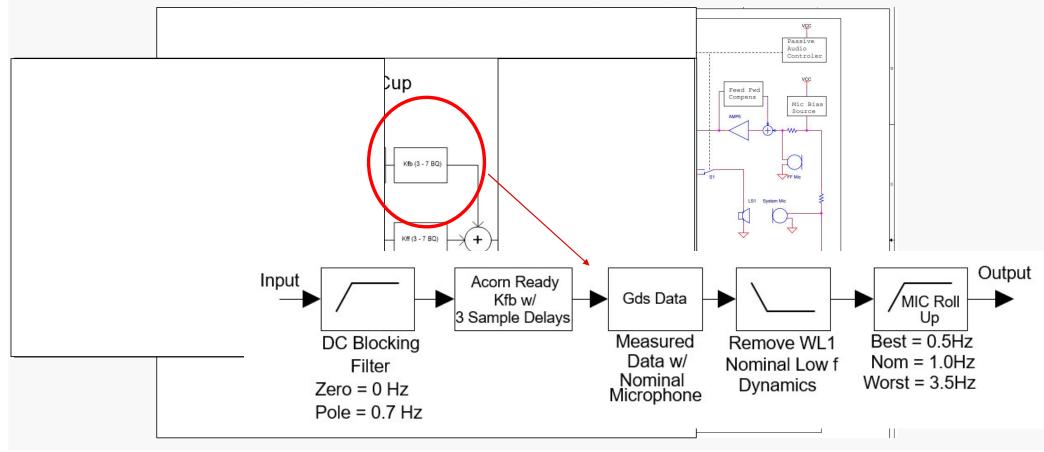
04 | Real Life Examples

System Partitioning

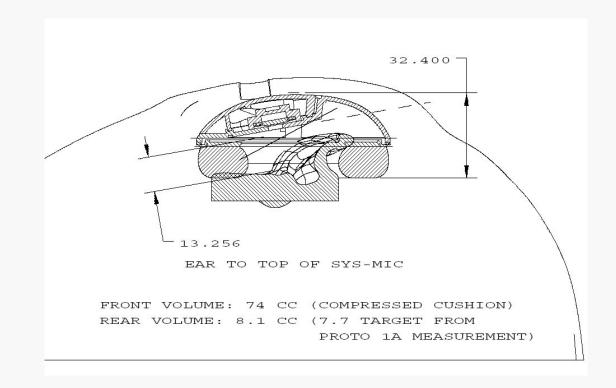


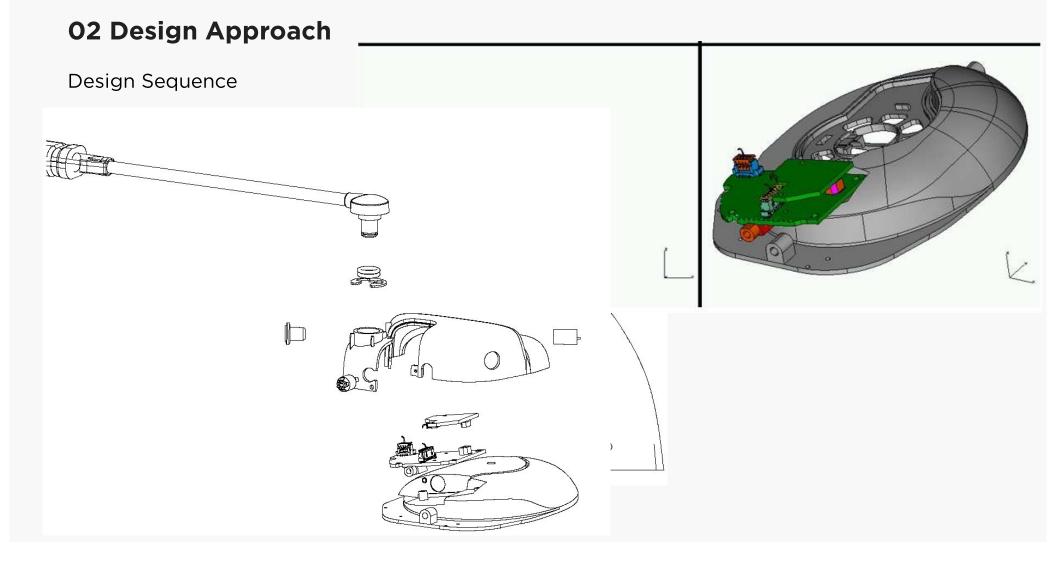



Break into Pieces


Mature Individual Elements

Put it all Together


Design Sequence - What Comes First ?


OR

Design Sequence

02 Design Approach Design Sequence 13.256 EAR TO TOP OF SYS-MIC FRONT VOLUME: 74 CC (COMPRESSED CUSHION) REAR VOLUME: 8.1 CC (7.7 TARGET FROM PROTO 1A MEASUREMENT)

Design Sequence and Integration Plans

Challenge:

3 Products in parallel, 1 team, share common core parts and algorithms

Non-ANR, Espisodic Music On-The-Go Moderate Activity

Non-ANR, HR Sensor Espisodic Sports Enthusiast High Activity

Design Sequence and Integration Plans

evel Program Compon								<u> </u>								
	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	
Product Development	Pha	ase 1: Pre-	Developm	ient					Phase 2	2: Develo	pment and	Launch				
Avalanche Products			ID 0.4	ID 0.6			DP				Alpha		Beta	SOP		
	Form Fa Chosen															
Platform																
Technology Developme	nt															
Sensing Platform						Separate, b efforts will										
Form Factor						purpose of efforts wit	each is to	feed the F	Platform a	nd produ	ct					
Comm Mic Selection						Individuals when integrat	working or	these tea	ams will ir	some ca	ses					
BT+ANR						ost cases wi	Il complet		rk at the e							
ANR/NonANR Earbud																
Sotto Compatibility																
Stetson Compatibility																
							ate team v									
						immediat										
Supplier Development						QC20 earb the Wo	uds and ca Ifcastle/Ru		•	•						
Flextronics QuickStart							/microph		ng with co							
								considera	uons.							

Product and System Design Fundamentals

01 | Requirements Management

Understand What Customer is Asking for Convert to Engineering Requirements (System and Component) Map out "How to Know When You've Succeeded" (How/What to Measure) Track It !

02 | Design Approach - Getting Started

System Partitioning Develop Integration Plans (Dependencies, What comes first/second) Execution Cycles (Design, Build, Test)

03 | Tradeoffs

Identify Conflicts / Possible Friction Points Best Practices Decision Tools Examples

04 | Real Life Examples

Identify

Experience Helps - But what if I don't have that ?

Study Full Requirements – Sometimes need to hunt Create Block Diagrams and Sketches – think through the whole problem Use Common Sense Trust your instincts Don't Forget Cost and Time Ask and challenge your teammates and colleagues

Common Asked for Conflicts at Bose: Long Battery Life / Small Size Heavy Re-design / Low Cost More ANR Performance / Better Comfort New Components / Cost and Effort

Best Practices - Avoid Guessing or "Opinioneering"

Gather Information – Objectively! Understand Goals and Priorities from Stakeholders

Quantify!!!

What are the Benefits? (Customer and Company) What are the negative consequences?

Always include Cost and Time

Best Practices - Make Robust Decisions

Use severity and likelihood To weigh benefits / costs accordingly

Project the full scenario(s) into the future What happens if it goes as planned What if it doesn't?

Create contingency plans in advance!!

If "X" happens, I will do "Y"

Maintain a "Plan of Record" ... Allow structured disruption Document your rationale !!

Decision Tools: Simple Tables and Scoring Matrices

Meets needs				
Some risk				
Plausible with significant risk				
Does not meet requirements				
Boesnotheetrequiements				
Primary Considerations	Product A = BTS0 Product B = BTS0		Opt Product A Spring CY15, P Product 1 = BTSOC1 + AN Product 2 = BTSOC2 + AI TWIE16 & TWOE16 = BTSI	IR1 NR1
	Product A	Adequate Smart Features		Need to finish work
Delivers Key Features and Experie	Product B	(non-ML) from ANR1 and BTSOC1 (Mercury Analsis) - new ML smart features like Speakeasy enabled for Product B Enhanced spatial audio and enhanced (Arbys) voice enabled for	Product B TWIE/TWDE26	assessing BTSOC2 HiFr4+ML capability vs algos. 2025 TVIE: Adequate Smart Features (non-MI from ANR1 and BTSOC Cardiff is adequate spati audio, Arbi's on BTSOC
	TWE/TWOE26	Product B. 2025 TWE: Cardiff is adequate spatial audio, Arbys Lite on BTSOC1 or other incremental voice improvements are adequate		or other incremental voice improvements are adequate.
_	Product A	Reqs simultaneous work	Product A	Regraimultaneour work on ANI and BTSOC2. Much of the
Time and Resource Constrain		on ANR2, ANR1, and	Product B (risky meeting Oct	BTS0C2 cade will be derived
Plausible path to delivery within current/expect		BTSOC2	1). Banded has timing	from BTSOC1 code. [RFC]
resource and skill set constraints	Product B		flexibilty	213-36-6642-5656-67566
	TWE/TWOE26	Sotup for TWIE/TWOE in 2026	TWIE/TWOE26	
	Product A Product B	Satup for TWEATWOE in 2026 could zignificantly reduce Size	Product A Product B	BTSOC2 costing comin
Cost/Size/Power	TVIE/TVOE26	and Cart IF BTSOC2 is acceptable	TVIE/TVDE26	March of 2023. Expecting BTSOC2 to
Ability to deliver key product requirement	its TWIEFTWUE26	for TWIE ANR. The opportunity	TWIEFT WUE26	cost more than BTSOC
		chip improved in 2027 with		but less than BTSUL
	Product A	ANR2 is about 6 months	Product A	BTSOC2 silicon timing
	Product A Product B	ahead of BTSOC2.	Product A Product B	vs. Product B C0/C1
	TVIE/TVOE26	ahead of BTSUC2. BTSOC1 is is well	TVIE/TV0E26	
	TWEFTWOE26	BTSUCTIS IS Well established.	TWIEFT WUE26	(Timing risk is for M0!
Silicon Readiness		ANR1 ready March 2023.		[RFC])
Production timing/status vs Bose developmen	tschedule	[RFC]		Timing risk of Product E delay is understood by product office
Supply Chain and Support	Product A	New supplier for ANR2	Product A	Both BTSOC and ANR
Risk associated with path to Production Ra			Product B	chip suppliers are well
sustaining	TVIE/TVOE26		TWIE/TWOE26	positioned to support
"One Bose Platform" Extensibility towards desired LRV and GR&D		Does not align with "One Bose Platform". [RFC] Working to minimize number of permutations in the platform roadmap and maximize SWHW relise		Takes us towards reduced number of compute platforms, and opens up the possibility of a single-IC solution fe TWIE/TWOE

Decision Tools: More Complex – Step 1/3 Work Through Priorities

	-						(RITE	RIA T	RADE	-OFF															
CRITERIA MATRIX	Description or Clarification	/*	Ca Camara	and a start	ales Pet u	Men Sie	an and the	and and a second	In anna la	Un Paling In	New Forman	Acamon os	The month of	ou nondono	Sister Ost	In Brito and	7	7	/	/	/	/	7	/	7	
ANC Performance	Overall dphons - benchmark is Bose IE ANR	X	Í	ĺ	ĺ	ĺ	ĺ	ĺ		ĺ	ĺ	Í	ĺ	Í	Í	Í	ĺ	ĺ	ĺ	Í	Í	Í	ĺ	ĺ	Í	
Audio	Compared to competitive benchmarks (X,Y,Z,AA)	~	X																							
Voice Pick Up	Voice Pick Up compared to benchmarks showing Bose needing improvement	+	î	X																						
Physical Size (Wearability)	Desirability and size of carbud relative to goal of being better than existing	←	~	↑	X																					
Battery Life (Wearability)	Overall Runtime - benchmark is 6 hours	←	1	↑	Î	X																				
Comfort (¥earability)	Longterm Comfort - Benchmark is "3 hours	←	~	~	≈	~	X																			
Stability / Fit (Wearability)	Stable and Fit of Population vs Bose benchmark	←	←	←	*	←	←	X																		
UX - On Product Vol Ul	Bose as benchmark and User Research Results	↑	Î	↑	1	↑	î	Î	X																	
UX – Nev Features	Able to deliver new features from recent brainstorm. Minimum is critical mass then more the better	*	î	*	î	Î	î	Î	←	X													2 0		14 S	
Aesthetics / ID	Visually different from existing	~	~	↑	~	~	Î	↑	←	~	X															
Development Time	Baseline is 24 months - better/worse etc	~	~	↑	î	~	î	Î	←	←	*	X														
Development Cost	Overall Spend to develop (tools,resources,capital etc)	~	~	Î	î	~	î	Î	←	~	~	Î	X													
Product Cost	BOM Cost	~	~	←	~	~	←	←	←	~	←	←	←	X												
Sets up Next Product in Portfolio	Ability of this product to set the table for next product	~	←	Ŷ	î	↑	î	Î	Î	î	1	Î	Î	Î	X											
Total		4	14	17	18	8	21	23	2	7	13	15	12	25	3	0	0	0	0	0	0	0	0	0	0	
Rank/Priority		12	7	5	4	10	3	2	14	11	8	6	9	1	13											
Weighting		2%	8%	9%	10%	4%	12%	13%	1%	4%	7%	8%	7%.	14%	2%						1					

Decision Tools: More Complex - Step 2/3 Develop Scoring Definitions

	,	Attributes Rank	ing Definitions			
Criteria	Definition			Ranking Division		
Chiena	Definition	5	4	3	2 (Discretionary)	1
		Better Than	Equivalent / Comparable	Competitive but worse		Worse Than
ANC Performance	Overall dphons - benchmark is Bose IE ANR	>= +3 dphons (Noticeably better than Bose A)	+/- 2dphons (Comprable to Bose A)	- 3-4 dphons (Comparable to Competitor B)		More than - 4dphons (Worse than Comp)
Audio	Compared to competitive benchmarks (X,Y,Z,AA)	Obvious preference for Bose	Most customers don't notice any difference	Many customers prefer competition and can say why		Obvious preference for competition
Voice Pick Up	Voice Pick Up compared to benchmarks showing Bose needing improvement	Among Best at noise rejection AND among best at voice artifacts	Among best at noise rejection, voice artifacts present but non- distracting	Distracting background noise OR distracting voice artifacts		Distracting background noise AND distracting voice artifacts

Decision Tools: More Complex – Step 3/3 Pugh Matrix

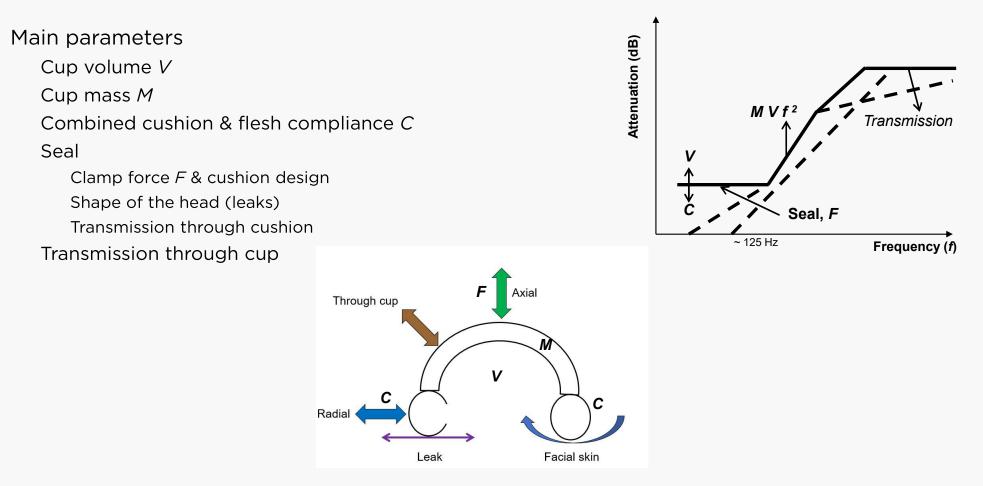
	в	L,	U	, E	_		6	н	L .	J,	ĸ	L,	IM.	N N	. 0		Ρ.	ų	н	5			U	V.	W,	X	Y	4	АА	AB	AL	AU
	Criteria	ANCPer	Boundario	Audio	Voice Pick Up	(Wearahina)	Battery Life	Comfort (No.	Stability / Fi	UX - On Pro-	UX - No.	Actine	Devol	Den.	unelop ment Cost	Product Cost	Sets up Next Produce	ni touro allolio				 	/									
	Priority	12	7	5	4	1	10	3	2	14	11	8	6	9	1		13						Í									
Idea	Weight	2%	8%	9%	10	1%	4%	12%	13%	1%	4%	7%	8%	7%	14	%	2%												Total Score	Total Weighted Score	non-weighted rank	Weighted Rank
Concept A Form 1260 battery New Stability Feature Platform=BTSOC1+ANR2		4	4	4			4	3	4	4	5	3	4	3			4												53	3.69	1	1
Concept A Form 1260 battery New Stability Feature Platform=BTSOC1+ANR3		3	4	4	1	3	4	3	4	4	3	3	5	3	4		3												50	3.65	3	3
Concept C Form 10XX battery New Stability Feature Platform=BTSOC1+ANR4		3	4	4	4		5	5	5	4	3	5	1	3	1	l	1												48	3.52	4	5
Concept D Form 1260 battery, New driver New Stability Feature Platform BTSOC1+ANR2		3	4	4	;	3	4	4	5	4	5	3	1	3	4		4												51	3.66	2	2
Simone Concept E 1260 battery, New driver New Stability Feature Platform BTSOC1+ANR4		3	4	4	:	3	4	4	5	4	3	3	1	3	4		3												48	3.57	4	4

Product and System Design Fundamentals

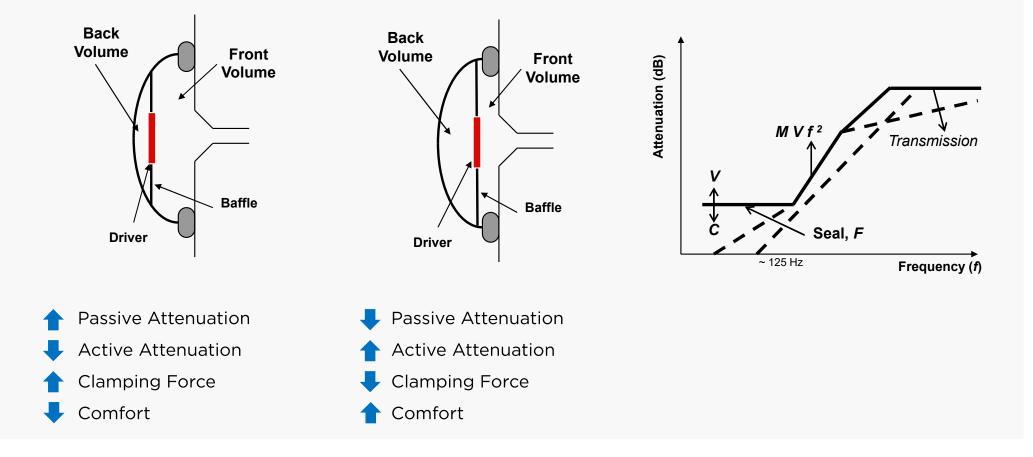
01 | Requirements Management

Understand What Customer is Asking for Convert to Engineering Requirements (System and Component) Map out "How to Know When You've Succeeded" (How/What to Measure) Track It !

02 | Design Approach - Getting Started

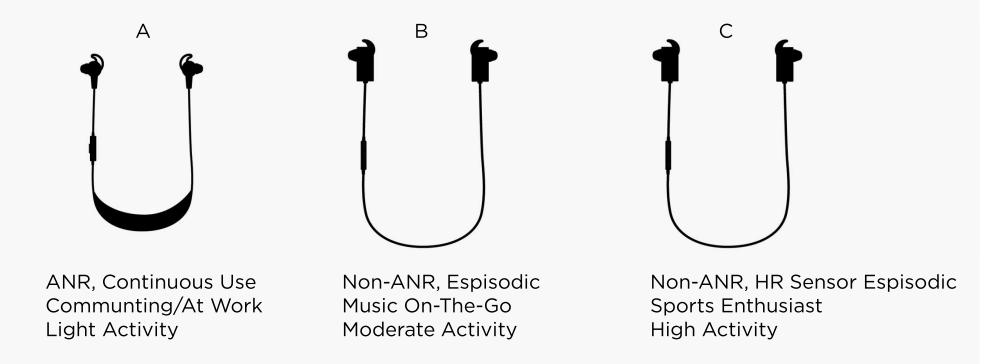

System Partitioning Develop Integration Plans (Dependencies, What comes first/second) Execution Cycles (Design, Build, Test)

03 | Tradeoffs


Identify Conflicts / Possible Friction Points Best Practices Decision Tools Examples

04 | Real Life Examples

O4 Tradeoff Example - Comfort & Noise Cancellation



O4 Tradeoff Example – Comfort & Noise Cancellation

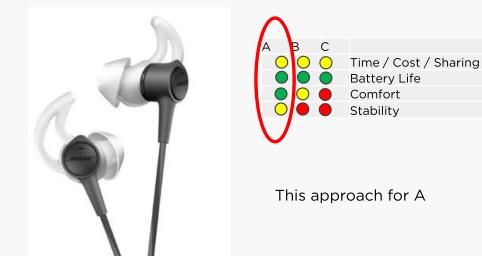
Challenge: 3 Products in parallel, 3 core use cases

1 team, share common core parts and algorithms

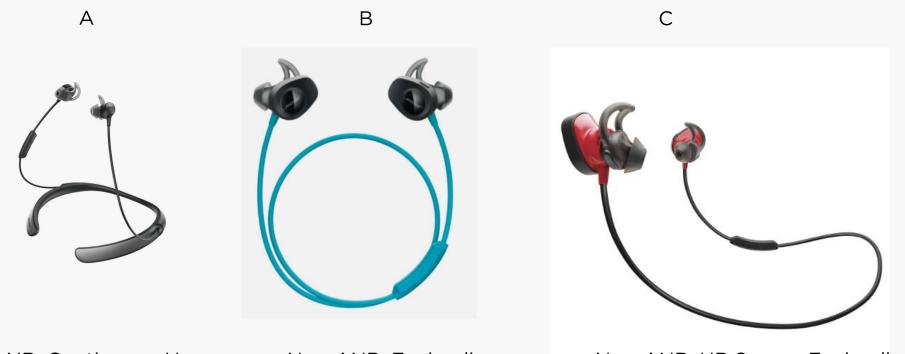
А

Everything at the Ear

Smallest Earbuds


Everything at the Ear

C Time / Cost / Sharing Battery Life Comfort Stability


This approach for B&C

Smallest Earbuds

Attribute											-	Benchmar	<					Scale 1-5						
Overall: The ability	to attract	interest	(perception	ı)																				
Variant	Small		Large	Small	Medium	Large	Small	Medium	Large	Small		Large		"Large"	"XL"	Small	Medium	Large	Small	Medium	Large	Small	Medium	Large
Appeal (avg)	2.0		1.3	2.7	2.8	2.3	3.0	3.5	3.0	3.2	-	2.8		2.4	1.2	2.0	2.0	1.8	3.0	3.3	2.5	4.0	2.4	3.3
Comfort (avg)	3.3		2.6	3.3	3.2	2.9	3.5	3.5	3.1	2.9		2.6		2.8	2.5	2.6	2.8	2.7	3.1	3.8	3.3	4.3	3.0	3.3
Sport Stability (avg)	2.8		1.9	3.4	3.6	3.3	3.9	4.0	3.3	2.0		1.9		1.8	1.5	2.6	2.4	2.6	3.1	3.5	3.1	4.0	2.6	1.8
Ease of Use (avg)	3.0		3.0	3.0	3.0	3.0	3.0	3.5	2.9	3.4		3.4		3.0	2.9	1.6	1.6	1.6	2.9	3.3	2.7	4.5	4.3	3.8
Scalability (avg)		2.0			3.2			3.4			3.2			2.7			3.2			3.2		ŧ	0.0	3.0
)					\bigcirc			\square							† -	t	*	$\mathbf{\dot{\mathbf{b}}}$
		Chorus		D	ogtag - Spl	it	D	ogtag - Sing	gle		Lester			Pendant		L	Jber Penda	nt		Uber Clip		At	Ear	W/ Neck
Form Factor Avg	2	2.4	4		3.()	(1)	3.3	3	2	2.8	8	2	2.3	3	2	2.3	3		3.:	1	3	.4	3.0
Average per Size	2.8		2.2	3.1	3.1	2.9	3.3	3.6	3.1	2.9		2.7		2.5	2.0	2.2	2.2	2.2	3.0	3.4	2.9	4.2	3.1	3.0

ANR, Continuous Use Communting/At Work Light Activity Non-ANR, Espisodic Music On-The-Go Moderate Activity Non-ANR, HR Sensor Espisodic Sports Enthusiast High Activity

