
Lecture 3

February 13, 2024

Make something real.

This week
• EX02

• Sensors PCB schematic design

• Plotly

• Users guide to me

• Specs

• Lab 2
• First team meeting!

• Lots to do!

Teams
• Sent out this morning

• We may adjust over the next week or two

• Teams are not competitors – work together!

TODAY
• The HW/SW product development process with a focus on engineering

design

• MAQS & Sentimet

“In preparing for battle I have always found that

plans are useless, but planning is indispensable”
--Dwight D. Eisenhower

MAQS: MIT Air Quality System requirements
We developed requirements based on internal staff discussions and talking
with EDS staff

1. It should accurately measure indoor air quality **

2. It should be portable ***

3. It should be possible to get the data off the device **

4. It should be a useful pedagogical exercise ***

5. It should maintain privacy *

6. It should be low cost *

7. It should be rugged and robust **

8. Multiple systems should be able to be used simultaneously ***

9. It should be easy to view the current and past data **

10. It should leverage MIT facilities **

Sentimet
• Two very similar needs

MIT Office of Sustainability

Miami-Dade County

MITOS
1. It should measure the local weather, at least temperature and humidity and

ideally also sun exposure and ground surface temperature and air pressure, all
with dynamics appropriate for the use case.***

2. It should be able to measure how many people are in the area passing through
(e.g., foot traffic) and lingering.***

3. It should operate without being connected to line voltage. ***

4. It should be portable and able to be set up by an average person in a variety of
outdoor environments on the MIT campus, including on a tripod or attached to
poles of various dimensions.***

5. It should be able to be physically attached to a HOBO MX2302A data logger.*

6. It should report faults, such as battery failure, falling, vandalism, etc.**

7. It should be as inexpensive as possible. *

8. Data from a sensor node should be able to be tied to a location.***

9. It should maintain privacy. ***

10.It should operate independently without user intervention for 2+ weeks.***

11.It should be rugged and able to withstand a summertime Boston-area
environment (heat, rain, wind and curious people). ***

12.Multiple systems should be able to be used simultaneously. ***

13.The system should present the information on a dashboard (with real-time data
outputs to a dashboard if possible), and also allow downloading of raw data.***

1. It should measure the "heat experience" at each bus stop, at least temperature
and humidity, but also could include air quality, all with dynamics appropriate
to the use case.***

2. It should be able to measure how many people are waiting, and for how
long.***

3. It should operate without being connected to line voltage. ***

4. It should be installable by a technician, and should be easy to set up.***

5. It should report faults, such as battery failure, falling, vandalism, etc.**

6. It should be as inexpensive as possible. *

7. Data from a sensor node should be able to be tied to a location.***

8. It should maintain privacy. ***

9. It should operate independently without user intervention for at least a
month.***

10.It should be rugged and able to withstand shipping, setup, and operation in the
Miami-Dade environment. ***

11.Multiple systems should be able to be used simultaneously. ***

12.The system should incorporate data from Swift.ly and present that information
to the operator in a useful way. ***

Mostly the same…could make one overall system, or two slightly different systems

Miami-DadeSentimet

Now what?

• We iterate between developing concepts, setting specs, doing design,
and developing a testing plan
• Because Sentimet already has v1 from last year, we can start from that concept

and keep/change it

• Not everything will necessarily be defined yet (and thus able to be
concretely specified)
• This may not be ok for some products (aerospace, medical) but often the case for

consumer, etc. ➔ Iteration can be important

• HW and SW are specified differently
• We’ll see this

Concept
Development

Engineering
Design

Testing &
Verification

Production
Ramp-up

Requirements, specs, and so on

stakeholders requirements

specifications

design

Done well, a design that passes all the tests will meet the specifications
and thus the requirements, making the stakeholders happy

Test & verification

Specifications

• Translate requirements into a specification document
• Covers both HW and SW aspects

• The goal is to have constraints for our system→ engineering is design under
constraints

• If our specs are complete, and if we build something that meets spec, then it will
meet our requirements

• Some specifications will directly imply a specific approach
• The need for interoperability with another product (that has WiFi) may immediately specify

WiFi

• The company may impose use of MySQL dB or STM32 MCU because that’s what’s used by the
rest of the company

• Sometimes specifications will be much more open-ended
• An opportunity for creativity & innovation!

Specifications

• What aspects do we need to specify?
• There is no all-encompassing approach

• These products are all specified differently

Common specifications for HW/SW products
Typically,

• Financial

• BOM, COGS, etc.

• Time to market

• Regulatory – safety, emissions

• Anything with a radio, plugged into wall, etc.

• For medical (and other regulated sectors) this can be
quite extensive

• Industrial design

• What does it look like, what materials are used, how
does it interact with the user, etc.

• Environmental resistance

• Is it used indoors? In salt water? In an auto engine? On
Mars?

• IP [Ingress Protection] rating

• Engineering

• Sensing, actuation, compute, comms, firmware,
software, etc.

These are not disjoint:
Needing to be updated after install: is that installation or
engineering?

Needing to work outdoors will impact the materials used in
the industrial design

Don’t worry. Just make sure it’s somewhere in document

• Security & Privacy

• Typically, user data is being communicated…what
data? how is it being secured? who has access?

• There may be regulatory requirements here as well:
HIPAA

• Packaging

• How is sent to the customer, could be
simple/elaborate

• Installation and servicing

• How does one go from “in the box” to “in use”?

• Will it be serviced in the field? Will the SW be
updated? Can the HW be fixed? Warranty?

Ultimately, the specification document should encompass all requirements

MAQS: from requirements to specifications

1. It should accurately measure indoor air quality **

• What is air quality?
• Based on before, this is PM2.5,PM10, NO2, SO2, CO, O3 [1h & 8h]

• Will generally also need to measure temperature and relative humidity, since
many other variables depend on those

• What is accurate?
• Need to establish for each sensor – TBD for now!

• What does indoor imply?
• Has implications for environmental resistance

• And availability of power [there are wall plugs, USB ports] indoors

MAQS: from requirements to specifications

2. It should be portable ***

• What does this mean?

• Can work without being plugged in ➔ we really
mean it should be small and light…watch vs.
toaster

• For how long? 1 min? 1 h? 1 day? Other?
• User is student: how long is student away from

charger? 12h seems about right These are both
portable

MAQS: from requirements to specifications

3. It should be possible to get the data off the device **

• It needs to be “connected” somehow

• Probably not just looking at a display and writing data down…

• Wired or wireless? Left unspecified ➔ Let’s go with wireless ➔
this then has regulatory implications because of the radio

• Lots of wireless comms approaches – specific one is TBD for now

MAQS: from requirements to specifications

4. It should be a useful pedagogical exercise ***

• Should be possible for each student to learn some skills: PCB
design/fabrication/assembly, 3DP, server set-up

• Want to connect to other classes

• Learn how to work as a team

Not sure how this will translate to specs…let’s revisit

MAQS: from requirements to specifications

5. It should maintain privacy *

• No personally identifiable information should leave the device
➔ implications for processing on server

• Information should be secure, only available to authorized users

MAQS: from requirements to specifications

6. It should be low cost *

• What does that mean? $100 BOM [for electronics]

7. It should be rugged and robust **

• Able to be transported by holding and placing in backpack ➔ it will require an
enclosure

• Able to survive 12” drop onto table

MAQS: from requirements to specifications

8. Multiple systems should be able to be used simultaneously

• This has implications for server set up ➔ one server for class with multiple
accounts? One server/student? One server with one db w/ different
permissions?

9. It should be easy to view the current and past data

• Needs some storage, some sort of display ➔ exactly what, TBD

• The choice will implications for firmware, software, server

10. It should leverage MIT facilities

• Must only require tools & equipment we can readily access

MAQS: from requirements to specifications
OK, let’s translate to specification document

What makes a good specification? No single approach for all of HW & SW

• It might be a well-defined metric and value (or range of values)
• Example: BOM < = $100

• Example: Measurement interval <= 10 min

• It could be qualitative
• Example: HTTPS GET/POST for server comms

• It could directly imply a particular implementation
• Example: Connectivity: WiFi 802.11a/b/g/n [2.4 GHz]

• Or you might not know what it should be yet
• Example: Sensor accuracy: ???

• Or, you might not even know about that specification
• Example: ???

A good spec is
verifiable…else how do
you know if you meet
the specs?

1. Have a plan: Work hard to plan
ahead…and adjust the plan as needed

2. Write stuff down: Your team should
have a single specifications document
– a common understanding

Don’t get hung up if you don’t know all
of the specs at the beginning

The two most important points:

MAQS specifications [1/2]
• Financial

• BOM <= $100 for electronics components, PCB

• BOM: TBD for enclosure , mechanical parts

• Time to market: ~8 weeks

• Regulatory

• FCC certification for WiFi radio module

• Industrial design

• Weight: < 300 g [~2 iphones]

• Size: <10 x 10 x 10 cm [kinda small]

• Survive 12” drop onto table

• Enclosure materials: 3DP plastics available in EDS, laser-
cut plastics available in EDS

• Environmental

• Operating temperature: 0 to 70°C [commercial temp
range]

• Humidity: 10 to 95% RH

• Engineering

• Sensors
• Air quality: TBD

• T: 0 to 70 °C

• RH: 10 to 95% RH

• Measurement interval: <=10 min

• Compute
• MCU: TBD

• Firmware in C/C++

• Comms
• At least WiFi 802.11a/b/g 2.4 GHz

• 5 GHz would be nice [801.22n]

• WPA2-Enterprise w/ PEAP (MSCHAPv2) authentication and TLS
encryption [this is what MIT Secure wants]

• Energy management
• LiPo battery

• Lifetime between charging: >12 h

• Server
• Machine RPi 3 or 4, one for each student

• SSH access for students, and staff

• OS: Linux

• Web server: NGINX

• HTTPS GET/POST connections

• DB: SQLite

Ver. 1

MAQS specifications [2/2]
• Firmware

• Still to specify
• How to reset?

• Data processing and what is transmitted

• Sleep state, interval

Does this cover all the requirements?

Here we see that SW requirements often are specified differently
[block diagram, wireframe, state machine, text] than HW

• Software [on server]
• Store data perpetually in SQLite table

• Fields: Index number, Timestamp, RH, T, AQ measurements

• No location information transmitted (or stored)

• Web front-end
• Framework: TBD

Web wireframe

Ver. 1

Test and verification
• Once you make it, does it work? Does it meet spec?

• How will you debug if/when it doesn’t work?

• For each spec, you want a way of testing it

• If you pass your tests

• Then your design meets spec

• And if you meet all your specs

• Then you fulfill your requirements

• And then success!

Test and verification
• Some tests are easy to write

• Weight: < 300 g [~2 iphones] • Test: weigh complete system

Test and verification
• Some are more difficult

• Energy Management
• Lifetime between charging: >12 h

• Calculate energy budget and thus lifetime
using part datasheets

Test and verification
• Some are more difficult

• Energy Management
• Lifetime between charging: >12 h

• Measure energy consumption of
components and use that to calculate
lifetime

Test and verification
• Some are more difficult

• Energy Management
• Lifetime between charging: >12 h

• Fully charge battery, run system using
simplified FW, measure duration

Test and verification
• Some are more difficult

• Energy Management
• Lifetime between charging: >12 h

• Fully charge battery, run system using
simplified FW, measure consumption
using energy meter, measure duration
inside and outdoors

What do we need for this test?

Test and verification

Some options

• ESP32 + PM board + battery on breadboard

• ESP32 + PM board + battery on breadboard in housing

• ESP32 + [full sensor pack] + battery on breadboard in
housing

• Etc.

• Fully charge battery, run system using
simplified FW, measure consumption
using energy meter, measure duration
inside and outdoors

What do we need for this test?

• Some are more difficult

• Energy Management
• Lifetime between charging: >12 h

• Think about what subsystem/
testbed/prototype you need

• Who will develop it?
• How long will that take?
• What does its development depend on?

Test and verification

There is no correct answer here

The more sophisticated the test, the more complicated it will be to execute

Especially for March testing, you will not have the complete system ready
so must make compromises

• Fully charge battery, run system using
simplified FW, measure consumption
using energy meter, measure duration
inside and outdoors

What do we need for this test?

• Some are more difficult

• Energy Management
• Lifetime between charging: >12 h

Test and verification

• Compare wireframe to implemented
front-end, visually determine pass

• Another simple one
• Software [on server]

• Web front-end
• Framework: TBD

Test and verification

• More difficult
• Software [on server]

• Store data perpetually in SQLite table
• Fields: Index number, Timestamp, RH, T, AQ measurements

• No location information transmitted (or stored)

Perpetuity is a long time…

Thinking about testing helps us understand the flaws in the spec

Test and verification

• More difficult
• Software [on server]

• Store data in SQLite table, at least 1 y of data
stored

• Fields: Index number, Timestamp, RH, T, AQ measurements

• No location information transmitted (or stored)

• Send 100 measurements, measure
storage needed, extrapolate to 80%
size of RPi SD card size

Is there a max SQLite db file size?
Does RPi need certain amount of free disk to
operate robustly (w/o crashing)?

Test and verification: FW & SW
• Tests of each function (unit tests) and overall FW

• Ideally, not just when everything works, but
consider common failures
• WiFi down…

• Reset

• Sensors fail

• And so on…

What happens if WiFi goes down?

Test and verification & tradeoffs

• More difficult
• Software [on server]

• Store data in SQLite table, at least 1 y of data
stored

• Fields: Index number, Timestamp, RH, T, AQ measurements

• No location information transmitted (or stored)

Here we see where the team must work together to balance tradeoffs
between disk size, cost, and data frequency

Server
Machine RPi 3 or 4, one for each student
Storage: 16 Gb SD card
SSH access for students, and staff
OS: Linux
Web server: NGINX
HTTPS GET/POST connections
DB: SQLite

 Needed to add a spec!

Iterating

We iterate between:
• Developing and refining concepts: form and function

• This will involve system design and partitioning

• Research: what’s out there and available, what do our competitors do?

• Update specifications document as needed (incl. tests!)  remember this is a working document

• Even before our first testing phase, you can research, model, prototype & test
• Identify high-risk questions that threaten overall system

• De-risk

• Once you have a system design & partition that is suitably stable – start detailed design &
development

Concept
Development

Engineering
Design

Testing &
Verification

Production
Ramp-up

MAQS: market research
• This is an active space

• For-profit, non-profit, DIY

www.iqair.com/us/air-quality-monitors

MAQS: market research

www2.purpleair.com

MAQS: market research
• This is an active space

• For-profit, non-profit, DIY

plumelabs.com/en/flow/

MAQS: market research
• Many products out there measure

PM10, PM2.5, VOC, NOx (and T, RH)
• But CO2? Pressure?

• AQI: Comprised of PM2.5, PM10, NO2,
SO2, CO, O3 [1h & 8h]

What about these?

Purpleair teardown

drive.google.com/file/d/11Y-
x0m3KHEIeb5fRSV8UtnKr9MZzPcdv/view

fccid.io/2APMO-FLOW/Internal-Photos/Internal-Photos-3952125

Flume FCC cert teardown

IQAir FCC cert teardown

fccid.io/2AMBQ-N1/Internal-Photos/Internal-Photos-01-3640386

MAQS: market research
• What sensors are commercially

available?

• COTS: commercial off-the-shelf

Plantower PMS series [1003, 3003, etc.]
$10-20/ea

Plantower PIRS10A
Price: $4

Particulate: PM2.5, PM10

Honeywell HPM series
$70-80/ea

Sensirion SPS30
$30-50/ea

MAQS: market research
• T/RH are readily available

• Lots of specs, sizes, costs, etc.

• VOC/NOx also readily available
• But difficult to relate to absolute levels

• Others are less common and/or
expensive
• O3: $20-50/ea

• CO: most are $20-50+/ea

• SO2: $20+/ea

Plantower DS-HCHO-20
~$25/ea

Formaldehyde/VOC/NOx

Sensirion SGP41
$5-8/ea @ 10

Bosch BME680
~$10/ea @10

Temperature, humidity
Typically bundled together…why?

Sensirion SHTC3
$2-3/ea @ 10
~25 parts in their product line

TE connectivity TSYS02S
$3-4/ea @10
~7 parts in their product line

Outcome: let’s focus on RH/T (useful,
cheap) & PM (useful, moderate cost)

MAQS: concepts & systems
• Next, let’s sketch some concepts & systems

• We need to consider
• Industrial design: what it “looks-like”, how it interacts with user

• Engineering: how it functions

• We can “sketch”
• On paper with pen or pencil

• On computer in ppt, figma, solidworks, fusion360, etc.

MAQS: industrial design

External view Internal view

MAQS: system diagram

MCU

RH/T

PM

battery

Power
management

IC

WiFi

ESP32-C3

USB

NGINX web server
Browser at

website

SQLite dB

Server: RPi 3 or 4
w/ Raspbian

Python GET/POST
request handler

External client
[phone, laptop]

Power management

Sensors

MAQS: system design & partitioning
• Our system block diagram starts to imply a system partition

• Functional partitioning: allocating functions to different parts of the system

• Physical partitioning: What parts go where, how do they physically connect to
each other

• Partitioning can be applied recursively
• Big blocks into smaller subblocks

• How far to go?
• As far as needed to make it clear what to design, and so a person/team can start

to design

• We partition to manage complexity
• Subsystems can be designed independently as long as interface is well-defined

• Allows abstracting away details of other subsystems

MAQS: system design & partitioning
• A good partitioning will have parts that

• Make internal sense –are coherent in terms of
the functionality

• Sensor suite partitioned from ESP32

• Minimize coupling between parts

• Minimize interfaces

• Interfaces often translate to connectors, wires,
cables, tubes, APIs, function calls, methods, etc.

• Strong coupling can suggest that parts belong
together rather than separate

• In a company, partitions may be organized by
team for each subsystem

• Sensors/electronics, power, firmware,
mechanical, industrial, SWE, backend,
frontend, etc.

• There is no optimal partition…

MCU

RH/T

PM

WiFi

ESP32-C3

Sensors

MAQS: system partitioning & tradeoffs
• How do we evaluate/compare designs?

• Trade-off analysis
• Translate a design back into specs: Performance, cost,

size, power, etc.

• Tradeoff implies that there is no single optimum – it’s
up to you as the designer (or your team) to choose!

• Identify & focus on high-risk and addressable
unknowns

• De-risk
• Research

• Model

• Prototype

• Once you have confidence in a subsystem
partition…do detailed design

Sensirion SPS30 Plantower PMS7003

Price $30-50/ea $10-20/ea

Size 41 x 41 x 12 mm³ 48×37×12 mm3

Power 5V@80 mA 5V@<=100mA

Measures PM1, PM2.5, PM4, PM10 PM1, PM2.5

And so on. You might care about lifetime, accuracy/precision,
low-power modes, connection interface, etc.

MAQS: sensor subsystem design
• Focus on sensing

• Several approaches to temperature sensing
(more on this later in term)

• ESP32 (and many MCU) have on-board temp
sensor

• But we don’t necessarily want that temp

• And we also want RH

• So choose separate RH/T sensor

MAQS: sensor subsystem design
• Sensors

• Connect to MCU, but partitioned separately

• Because ~0 MCUs have integrated sensors

• T is exception…more in a few weeks

• But anyway we want RH also

• Some sensors do have integrated MCUs

• Such as for incorporating processing, AI, etc.

• Reduce part count on board

• But typically not full-feature MCU

• RH/T
• Together, or partition?

• Almost all RH sensors also include T, so no
benefit to separate T

• ~all RH/T sensors have digital outputs

• PM
• Relatively costly but important and reasonably

accurate

MCU

RH/T

PM

WiFi

ESP32-C3

Sensors

MAQS: sensor subsystem design
• What is the interface between sensors and

MCU?

• Physical interface
• Chip-level comms is often via I2C, SPI, UART

• 2+ traces on PCB, 2+ pins on MCU

• More MCU pins ➔ bigger MCU (sometimes), more
expensive

• Functional interface
• A digital communications protocol: I2C, SPI most

common

• MCU should have the needed communications
peripheral (else you have to bit-bang your own)

• An API/library

• A set of commands from sensor manufacturer OR a
library that encapsulates those commands

• You can always write your own as well

The datasheet is your
friend

MAQS: sensor subsystem design
• What is the interface between sensors and

MCU?

• PMS7003 sensor
• Comes in two different interfaces: I2C and UART

• I2C

• No extra pins needed on MCU b/c already using I2C
for RH/T sensor

• ~$30-40/ea

• UART

• Need extra UART on MCU – luckily ESP32 has 2
(actually 3) UARTs

• One UART typically used for USB programming

• Two extra pins/traces

• ~$10/ea

Hi-risk question:

Will two UARTs work simultaneously on ESP32C3?

➔ purchase PMS7003 (UART) and try it out!

…works

MAQS: power subsystem design
• Modeling can sometimes save time and money

• You know a lot from all your training…use it!

• Specifications
• Energy management

• LiPo battery

• Lifetime between charging: >12 h

Medium-risk question:

Is this going to be easy or hard?

MAQS: Power management – modeling
• Power

• We’ll do a lot more in a few weeks…

• Can we estimate the lifetime?

• What’s the biggest energy consumer –
usually MCU or comms
• In our case, WiFi

• Let’s check ESP32-C3 datasheet

• What about battery?
• ~infinite number of choices

• Most common rechargeable choice these days
is LiPo

• Let’s look at 18650 b/c it is used in 6.08
• 3.7V nominal for single cell

• Typical capacities 2200 mAh for Adafruit one

Assume 400 mA @ 3.3V consumption
Assume 2200 mAh capacity @ 3.3V [assume no
energy savings for 3.7V to 3.3V conversion]

~5.5h if transmitting WiFi continuously…which
we aren’t going to be doing ➔ should be ok!

