Computation

6.900 EFI
Spring 2023



Flow of Information

* All computation is really comprised of functions
that produce outputs given inputs

. 4 )
o=outputs 2 =7
. = inputs ,
f P o I —— Computation — O
= your logic
Theory of Computation
o f J
Theoretical
Computationa!ﬁ =
1 ”Algorith m” (n) MICHAEL SIPSER
[f(l‘)q't c 209

18.404/6.840

3/15/23 6.9000 SP23 2



Computation

* |s an abstract concept

* But it can be implemented:

* Mechanically (for example, gears)

e Chemically (for example, DNA computer, cells,)
* In Quantum realm (for example gbits)
 Electrically (What we do now)

Electrical computation has proven extremely scalable,
allowing an exponential rise in the amount of
computation that can be deployed, in charge of much of
the 20th and 21 century information revolutions



The Big ldea

 Computation takes place in the electrical domain
because it is the easiest to scale:

* We design circuits to manipulate electrical energy to
give us computation:

e Circuits can be hardwired to perform a particular
computation

* Or can be generalized to be a “computer”

 Computers are circuits that are designed to be flexible
in the logic they implement.

* We change that logic with programming languages



The Big ldea

* Most modern computational devices take on this form*:

,’ ___________ \/’ ------------------------------- \'w'---f ------ N
| Outside Electrical Domain: Outside \
| . .

| Domain: Domain: i
I \ 7 ) :
E \f a - \/ :
| :
] — Transducer » Computation Transducer [~ i
1 1
1 1
: /\ Y, \ /\4 :
i \ !
| o J :
1 1
i |
\ A |

N e e o o al N e o o o o e ',‘\~ __________ '/’

*There’s always exceptions, so this isn’t a 100% true statement



Transducer

* Any device which converts energy/information
from one form into another
* IMU*: acceleration/velocity = electrical
* Pressure sensor: pressure = electrical

. . 6.200, 6.012,
* Microphone: pressure waves > electrical Prof, Farnaz Niroui's class
e Buttons/Switches: mechanical force = electrical
* LED: electrical = Light " ee¥eons
. ACTURTORS
* Buzzer: electrical = pressure waves A
* LCD: electrical = Light/position - =

ACTUATORS

SENSORS

&
TRANSDUCERS 4-5/1s

*Inertial Measurement Unit



Break Transducers into Two Classes

* Sensors: Convert outside energy/info into electrical
form

* Actuators: Convert electrical energy/info into
outside form

/
Transducers

@ )
Sensors @
\_ 7

3/15/23 6.9000 SP23




Update our Big ldea

* Most modern computational devices take on this form*:

STt T \,’ """"""""""""""""" \,’—-_-T ------ N
| Outside Electrical Domain: Outside \
| . .

| Domain: Domain: i
I \ 7 ) :
|

: \f B\ / :
| i
: —> Sensor * Computation Actuator > :
| i
! Va ) I
1 1
i |
I f \. J I
1 1
i |
\ A |

N e e o o al N e o o o o e ol‘\~ __________ ’/’

*There’s always exceptions, so this isn’t a 100% true statement
3/15/23 6.9000 SP23 8



Update our Big ldea

* While the general pattern has remained constant since the
1900’s, the scope/breadth of the inputs and outputs has scaled
tremendously...

* In the 1940’s, a computation block would take in several hand-
entered numbers and maybe solve some third/fourth order
differential equation and return the coefficients as a result

* |In the 2020’s, a computation block may take in Gbps of video,
audio, environmental, meta data and control entire fleets of
drones and direct vehicles and keep you entertained/engaged
with random stuff



o

Another Issu

{ Outside
1 .
! Domain:

‘!/ Electrical Domain:
!
1
I
1

Actuator

’ Outside
Domain:

__________

)

The “Computation’
i box may really be:

Computation
a - : ”’_ ______
| -
_____________ /A\____ ——— L ””’
--------- e
/””’
s F ) Server #2
I, /
(]
! Server #1 - /
'I
,’ \ J
I
! \ ) X
1
I - \
i I;mt;edd;ﬁi " | Embedded Embedded
stem mbedde
1 A 3 System #3
VoL J ystem #2
\ J
\\\ \ k J
\
Mo Sensor
\ L]
S Engine
\\
\~~~

»
1.
-
----------
-—-----—-------------------------—---—--

~\
) A
\
Server #4 1
Not Yours |
!
) 1
]
/4
/
V4
V4
V4
V4
V4
!
I
I
‘\
\ \\\\\
\
\
4 N\
\
\
\
Server #3 !
|
I
\ Y, I
]
/ '
I
]
]
4 R ]
]
]
H
PC #1 I
1
/)
\_ J ’l
,/



l/” \‘I
Evel I Dee er / [ o Rovous | |
H *| Not Yours H

/ {

’ 1

I’

’

III

_________
-
-
-

-
-
-
-
-~
-

* The “arrow”s on the previous

page represent / ‘ [
communication channels, ﬁ

many of which have their \
own computation in them of -l
varying complexities!

eeeee

* Conveying the push/unpush of a button to a nearby embedded
system needs maybe two wires that can be loopy messes...maybe
bandwidth of 20bits per second (bps)

* Conveying 24 bit color 1080p video at 60fps is 2.98Gbps requires a
little more than two wires



The “Computation”

 Computation is still developed and deployed...but we
no longer deploy it on one machine

* Dozens up to millions of separate devices, all capable of
computation and all capable of sharing data with one
another are now the canvas

* As an EECS person, it is a lot to take in

Used to Be: How it is Now:

AT

A S "?’ R =

,,,,,

B

“I guess it’ll be Cheerios.” “I'm having an existential crisis.

. ?Il
3/15/23 £ 9000 SP23 What does it all mean: .



Reat forthe Haters in 100 Seconds
= = = 1M views * 10 months ago

&) Fireship @

React is the most popular JS framework ever, but somd

R 2t LoBtildiool Part 1 - Buildroot | Digi-Key...
\ DON’T WASTE | Can Save You Money! — Raspberry Pi Alternatives

2M views * 1 month ago ggregatig

" YOUR MONEY!

r‘rr- l iniie Tanh Tine M

PHP isn't used by REAL websites

9.3K views * 4 years ago

@ John Morris

WIKIPEDIA. I've been getting these comments more and more lately: “...le
The Free Encyclopedia

C




Distri
Syste

0

uting Your Algorithm Over the

T

* You have a computational task that must be done. How
do you distribute it among the chain of computation that
exists within your system?

Sensor
Engine

.

Embedded
System #1

Theoretical
Computational

/” “Algorithm” iggﬂ
0 f(t)Q’z e =

«——| Server #1

Server #2

PC/Phone




Choices, Choices, Choices

* Where you choose to do your compute impacts:
 What hardware
* What communication protocols
e Costs (startup, runtime)
* Security
* Robustness/Reliability/Flexibility
* Energy Usage
* Where/How to deploy (geographically)



Truly Socio-technical Systems

* The physical and conceptual range of scale in
modern EECS systems is ridiculous:
e Concerned with scales from nm up to 10,000 km
e Concerned with data from bits to terabytes

* The system is embedded in society and it is linked to
all of us.

* Humans now carry phones around 24/7 of which we are
constantly aware and monitoring.

* [t isn’t exactly the Matrix™ but it isn’t too far off



Reminds me of a Poem

No device is an island,

Entire of itself.

Each is a piece of the continent,

A part of the main.

If a clod be washed away by the seaq,
Europe is the less.

As well as if a promontory were.

As well as if a manor of thine own
Or of thine friend's were.

Each device’s failure diminishes me,
For | am involved in the Distributed, Interconnected Embedded Systems/IOT.
Therefore, send not to know

For whom the bell tolls,

It tolls for thee.

-John Donne (1572 - 1631)



So what are the different .
/ Server #4

. ]
types of computation? g
* Issues associated with them? / J
* Benefits? K
* Problems? _ 7/
pmmmmmmm =TT ol l/
¢”" |I
/l f \ / Server #2 \ ‘\\
U ~
q
,l' Server #1 s g -
'I
," / " ) \ Server #3
i \ ) }
1
: Embedded f \ )
I Embedded
',‘ System #1 \ Embedded System #3 /
VoL J System #2 7 3
\\\ \ \_ ) b g
\\\ Sensor PC #1
RN Engine §




Servers

Server #1

Server #2

Embedded
System #3

Embedded f
System#1 [ | Embedded
) System #2
\ &
Sensor
\\“\\\ Engine

——————-----_-~

Server #4
Not Yours




Server?

* Generally a standalone computer running a full operating
system in an always-on mode

* Name comes from it “serving” files or resources
* Usually a fixed-in-position piece of computation

* Priority placed on:
e up-time/reliability
 Redundancy
* Threading, parallelization where possible
 Raw compute power (GPUs, specialty hardware/cards)

* Less priority placed on:
 Power consumption (to a point)
* Cost (to a point)
e Size (to a point)



* You’re using $S35* Raspberry Pi’s
in our class

* You can easily spend >S100K on
a raCk Serve r’ though B PowerEdge R840 Rack Server

[] . . & . (. sk a question 4
* These can be specialized with: " I -

igned to balance compute with extensive local storage.

 Redundant power supplies

Estimated Value $156;506-82

* Huge num bers of Total Savings $56,099.93
cores/threads/memory Shipping Free

. Dell Price $94,400.89

¢ EX pe nsive G P U S Or Ot h er acce I e ratO ) Selections may result in additional updates

to the overall configuration, which may

Y De pe N d S O N t h e p u r pose Of t h e impact the price for Support and Services

and the total overall price for this product.

Server

*now $200 because of supply chain issues
3/15/23 6.9000 SP23 21



Use Servers to...

* Act as long-term, large-scale data storage for
system (file management or databases)

* Act as relay/interconnect for many client devices

* Provide “callable” access to
oroprietary/expensive/power-consuming
orocessing

* Often form the backbone/core of your modern
distributed system



In Real-Life Do You...

* Buy server(s)? If so have to:
e Pay for them
* House them
* Feed them (with power)
e Maintain them (24/7)...pay for staff
* Deal with ISPs directly

* Rent server(s)? If so:
e Pay a premium (but depending on scale might save money)
* Don’t have to house, feed, or maintain
e Can complain to somebody when they break, up to a point
* You lose autonomy



State of the Field

e Server space can be rented at
varying levels of support

 Some companies offer raw

servers (sort of like what we
did)

 Some companies offer in-depth == %;%%S’Oﬁ

ecosystems

alllulll'{')D

CISCO

3/15/23 6.9000 SP23 24

f\k

mai
cean




And Even Then...

* Do you rent real machines and get full claim to
their hardware? (more expensive)

* Do you rent “virtual machines” which generally will
not run as fast and aren’t the best for performance,
but will be cheaper and might be fine.

* You can also rent “elastic compute” now

 the resources allocated to your server(s) can be
increased/decreased over time as needed

e Billed to the second

e So lots of choices



Server Languages?

* Massive Variety and Options when it comes to
“server” programming

* While the highest performance is still largely
accomplished with C/shell scripting...

* Most favorite languages have server frameworks:
* Python (Django, Flask, FastAPI)
* Javascript (NodelS...React Angular, Vue)

Rust (Rocket)

Golang (gin)

PHP

Ruby (on Rails)

* Java



Servers are Always Around

* Restarts and updates are relatively easy™* to
implement on a server

e Servers are generally easier to work on since they
are by their nature remotely accessible

* Their central nature makes them very delicate.

* A piece of edge computing (embedded sensor) going
down affects only that sensor/area

* A server going down takes the whole system out.



Embedded Systems e
/ Server #4

]
," Not Yours
Il
U
,I
,I
,l

II

) \
p N / Server #2 \ “Sal

Server #1 - ’ f
/ X ) \ Server #3
Embedded f \ \
Embedded

System#1 [ | Embedded System #3 /

) System #2 f \
\ - J ) ]
PC #1
o Sensor

Sse Engine < g




Embedded System

* Generally cheap and small enough to be embedded
“in the field”

e Usually a “smaller” computational device, though
that is a historically relative term:

* 1980/90s: “embedded” meant 2MHz 8 bit microcontroller
with 2K RAM

* In 2023, “embedded” can mean full computer running an
operating system with 16 GB of RAM



Wide Range of Capabilities

° From Very Cheap and Very I
S | m p | e Atmel  Atmel s-bit AVR Microcontroller with 2/4/8K

Bytes In-System Programmable Flash

ATtiny25/V | ATtiny45/V | ATtiny85/V

 Atmel and other companies T
have pursued a strategy of E=—a.
making very small, very w
simple (8 bit), very cheap
microcontrollers

* Low power consumption, but
not very computationally
powerful

3/15/23 6.9000 SP23 30



Wide Range of Capabilities

» To VERY Capabile... sk

System Control Main CPU Platform Connectivity
o NXP h h 1 MX Secure JTAG Core eMMC 45/SD30x2
a S t e I * PLL OSC Am” Cortex"-M7 8 x UART
RT1060 microcontroller, - e | =e
. . 4xFC
considered fastest in the e
6 x GP Timer
world right now: ' Multimedia s cloc rc 1
' e g
e 600 MHz HE e oo
. B i one
e All this stuff =2 T oD LN
Internal Memory External Memory 2xUSB20
° h PHY
* Obviously more NN |Sowgmdommss| | S
98 KB ROM with IEEE" 1588

eX p e n S iVe b u t fa r fa r Power Management Em{;:::?%%:::n"ow ADC/DAC

Parallel NOR Flash

DC/OC & LDO NAND Flash 2x ADC {20-ch )
more performant G T
Security
Ciphers & RNG Secure RTC eFuse HAB

i 1 Available on certain product families

3/16/23 6.9000 SP23 31



General Trend in Embedded Field

* Power consumption is a huge driving factor in the
embedded field, in a far different way than with
servers

* General move towards more computationally
powerful platforms in conjunction with deep sleep
modes of operation

|t is often better to be full-on hardcore for a short
period of time and then deep sleeping than running
all the time at a slower clock



System on Chips are also
Becoming Popular

* Our ESP32-C3 by Espressif

iSn’t jUSt a programmable Espressif’'s ESP32-C3 Wi-Fi + BLE SoC
core with memory

BLE 5.0
ROM Wi-Fi MAC link
controller
Cache
Wi-Fi BLE 5.0
baseband baseband

12C
RTC memory
12S

* Also has additional systems
on board for:

* RF management
* WiFi

SPI

SRAM

RF receiver

Clock
generator

RF
transmitter

Switch

Balun

e Cryptographic tasks yoyy

* All in one single piece of z
silicon

UART

ADC

=
=
@
7}

(0]
m =
I>

AES

GDMA HMAC

Temperature sensor

RSA

RNG

Digital signature

XTS-AES-128 flash encryption

Block Diagram of ESP32-C3

3/15/23 6.9000 SP23

33



FPGA/SOCs, RFSOCs

* A quad-core ARM
* A dual-core ARM

* An FPGA
* 10 Gsps ADC/DAC
SpS S
' Single-Chip Adaptable Radio Platform
Processing System
o __ DisplayPort
emory UsB30 |
Quad-Core Arm® Syste ——
Subsystem  SATA |
Cortex®-A53 F
. (DDR4) - _ PCle® Gen2
Dual-Core CAN—]
Arm s
Cortex-R5 SDEHEN
~ NAND |
Programmable Logic Logic Fabric & DSP
Differentiation &
Acceleration
CPRI, 10GE, 25GE, ...
Nx100G @
.10010011010101... . L Modulatlon 0 ?r?aijgz’:aomﬂglé‘:mp DSP Mixing
.100111010101... ~ MAC 1 Digital Pre-Distortion e Al m
. ‘ + Full Duplex IP
Digital
Baseband <+Connectivity—»<+—— Baseband/Modem — <— Digital Front-End —><—— RF Front-End ——
Integrating the RF Signal Chain
3/16/23 >>5

© Copyright 2019 Xilinx

Send/Receive

Any RF Signal
(Multi-Standard, Multiband)

£ XILINX.

34



Embedded Programming

* As embedded-level computational devices have
become more and more capable, there has been
some appearance of higher languages (python)

* For the most part, however, embedded
programming is still heavily dominated by C and/or
related languages.

e Performance is very important
e Stability is very important

* Cis lower level and therefore more transparent...if done
correctly fewer things can go wrong



Embedded Programming Rules

* A lot of rules have to be in place to make sure devices
running embedded code are super stable for long
periods of time

» Updates/fixes are very, very costly! Basically have to do
a recall.

* JPUs C coding standard is a great document to read and
inform in regards to writing software for embedded:
* https://yurichev.com/mirrors/C/JPL Coding Standard C.pdf

 Makes sense since JPL does stuff with satellites and other
things where you can’t really drive in and reboot the system



https://yurichev.com/mirrors/C/JPL_Coding_Standard_C.pdf

OTA Updates

* Some new microcontrollers are starting to posess
the ability to do “over-the-air” reprogramming
which would enable updates, but this is still
somewhat rare



Embedded Subsystems g

]
," Not Yours
Il
U
,I
,I
,l

II

) \
p N / Server #2 \ “Sal

Server #1 - ’ f
/ X ) \ Server #3
Embedded ( \ \
Embedded

System#1 [ | Embedded System #3 /

J System #2 f \
\ - J ) ]
PC #1
o Sensor

Sse Engine < g

»
~ -
- p————— R
-—--_-___-___________-_-———-———-————————



Example: TlI's AWRL6432

* Single-chip low-power 57-GHz to 64-GHz

automotive mmWave radar sensor

%

mmWave RF and Analog subsystem

%

_<

<

Front-end controller
subsystem

Application subsystem

(Customer programmable)

l |

l |

I | QSPI

LNA IF ADC i || owa
Cortex-M4F

: | at 160 MHz SPI
I

| Digital Front End I | SONFD |

LNA IF ADC } | ADC
(Decimation filter : Buffer | Prog + Data Boot ROM LIN

| chain) | 8 RAM + optional

I 512 KB fixed routines

I I [ uarT |
[ —

| LBIST, ESM

| | o| Memory

| :| 7] o0
I [Z] |¥] s1zks || Watcndog |[Tocc ]

I | = (see Note)

Internal loopback for test 3 Synth I Ramp Generator | 3 Test/Debug
and monitoring (20 GHz) I (Timing Engine) «Q HWA1.2
I (80MHz)
k : | GPIO
| _—
PA Py I RF control processor |m————————— —— — = — — — — — —
socc | (M3)
(Tl firmware) | LDOs
I — — I DPLL PRCM, RTC and 32-kHz
ro ata i
PA Temp | anngOM B | Wakeup Seq Oscillator
sensor [ Osc.

| | Always ON low-power domain

|
HIF  xTAL
Note: Up to 256 KB of L3 RAM can be shared with M4F (40 MHz)

3/15/23

6.9000 SP23

Serial flash interface

Control/Communication
interface

Communication interface

Communication interface

For debug and Control/
Communication interface

PMIC control, EEPROM
interface

JTAG for debug and
development

39



IMUS

* IMUs have been used for step counting for decades
nOow.

* You can now buy cheap IMUs that deploy step-
counting algorithms inside and report steps to
you...

* Don’t even need to spend your microcontroller’s
compute cycles on finding peaks/troughs of steps.



Datasheet SGP41

V O C S e n S O r Air Quality Sensor for VOC and NOx Measurements

Disclaimer: all specifications are subject to change without further notice

MOx based gas sensor for air quality applications
Outstanding long-term stability and lifetime

12C interface with digital output signals

Very small 6-pin DFN package: 2.44 x 2.44 x 0.85 mm3
Low power consumption: 3.0 mA at3.3V

Tape and reel packaged, reflow solderable

lat i -chi |

thotp A EI s Voou
= | [ | =
, 1 1 l " 1

; heaer —f— v
T controllers : m'?er s |
. | 1 | I
MOx 1 1
material : - 'I = I
pixel 1 ‘ g I signal g - |

ixel 2 | : processing E

pixe ! g E: S .. s :
MEMS : analog --%-----I

Figure 1 Functional block diagram of the SGP41.

3/16/23 6.9000 SP23 41



Embedded
System #1

Server #1

.

\

Server #2

Embedded
System #2

Embedded
System #3

——————-------~

Server #4
Not Yours




The ESP32-C3

Espressif’'s ESP32-C3 Wi-Fi + BLE SoC

* Quite a few Vln 0PU
accelerators WEFI VA

RISC-V controller

32-bit
BLE 5.0
baseband

Microprocessor
Wi-Fi

baseband

[

SHA RSA

AES RNG

HMAC Digital signature
XTS-AES-128 flash encryption

Block Diagram of ESP32-C3

3/15/23 6.9000 SP23 43



Other Types of Accelerators?

* Floating-Point Units (FPUs). You can do floating point
representation using just ints, but it takes time and

CPU cycles. Instead spend a bit more on a hardware
FPU

 Compression algorithms
* Interface hardware (ethernet, memory management)
* Machine-Learning Circuits (TPU)



An Interesting Pattern

* You don’t see as many raw accelerators in their own
chip
* What you are seeing are many accelerators
accompanied by additional processor cores.
* A lot of ARM cores
e Starting to see more RISCV cores show up
e Little in the way of x86 ones because of bloat
e Other proprietary cores



TI's AWRL6432

* Single-chip low-power 57-GHz to 64-GHz
automotive mmWave radar sensor

| Front-end controller | Application subsystem
mmWave RF and Analog subsystem I subsystem | (Customer programmable)
\( I | QSPI ——— Serial flash interface
LNA IF ADC i I DMA
| M4F Control/Communication
| M SPI i
| | N interface
\( | Digital Front End I | CAN-FD I—— Communication interface
LNA IF ADC } l ADC e —
[ (Decimation filter i Buffer 9 R e LIN —— Communication interface
chain) Wl 512kB
I | For debug and Control/
UART — A
| | — Communication interface
c 3 | LBIST, | ESM | PMIC control, EEPROM
% IF ADC | I Radar Data PBIST interface
I g M?[na?rv
| I {£] [2] s1zks || Wetchdog |[Tcc ] .
I | = (see Note)
Internal loopback for test Synth | Ramp Generator 2 Test/Debu JTAG for debug and
and monitoring & (20 GHz) I (Timing Engine) I o HWA1.2 9 development
I (80MHz)
I k : I GPIO ——
|
PA 2B [ RF control processor [m—————— - ——— - —
SOcC | | (M3)
I (Tl firmware) | LDOs
I I DPLL PRCM, RTC and 32-kHz
PA Temp I P“Lgé“c/;\“')l" gla\tl\all | Wakeup Seq Oscillator
@ sensor | an Osc
| | Always ON low-power domain
|
HIF  xTaL
Note: Up to 256 KB of L3 RAM can be shared with M4F (40 MHz)

| don’t want this. Just give me the digital front-end

3/15/23 6.9000 SP23 46



uBlox SARA-R500 series

* The same cellular modem used in the Boron LTE
board some of you requested:

* Has a full internal @blox
processor in it as e |

well, with some - L, oo
degree of S sl
programmability \ =

..................................................................................................

Figure 2: SARA-R500S block diagram



-ven an Embedded System may have
multiple programmable elements on it

* Do you use all the computation?

* |s it cost-effective to do so?
* Not always so clear-cut



Other Servers

Server #2

Embedded
System #3

/ Server #1
Embedded f
System #1 [ | Embedded
J System #2
\ 5
. Sensor
S Engine

——————-----_-~

Server #4
Not Yours

-~y B
- ————— L
-_-----_--_________-———————-———-—————————



Other Servers

* You may also find yourself using (either for free or
via paying) other servers

 Companies and organizations will make
callable resources accessible to

perform particular computation tasks
chatGPT
* Companies and R
organizations will make I -
callable resources
accessible to perform —

particular computation
tasks

nnnnnnnnnnnnnn



Swiftly

 Company we’ll work with

* Have servers, provide digested/presented data that
isn’t really their data

Miramar Real-Time Stats

Search S| LS el N L s e A B G T 12 active trips (2 unassigned, 0 canceled)

Vehicle

Disply =000 E " omm®p o owsal- . awims o osetlake oo SN AR PANEEe CR @ L7

\\\\\\\\

ssssssssssssssssss
Hialeah

3/15/23 6.9000 SP23 51



User Computation ra
/ Server #4

]
," Not Yours
Il
U
,I
,I
,l

II

) \
p N / Server #2 \ “Sal

Server #1 - ’ f
/ X ) \ Server #3
Embedded ( \ \
Embedded

System#1 [ | Embedded System #3 /

J System #2 f \
\ - J ) ]
PC #1
o Sensor

Sse Engine < g




Consumer/Client Computation

* You can also “farm out” computation to consumers

* Example:

* Do you generate beautiful graphs on a server then send
the user/consumer an SVG?... (Pros/Cons?)

* Do you send the user raw data along with javascript/html
and have their computer render it locally? (Pros/Cons?)

e Can you take advantage of consumer’s device
computation to avoid needing to do additional
computation on your own hardware? Examples?
Examples that we have already seen???....



. l”’ f h
4 \
Using a Human | serversa | |
H Not Yours |
/ !
) 1
I'
,I
,I
,l
II
j \
( \ / Server #2 \ \\
Server #1 - g ‘ )
/ " ) \ Server #3
Embedded f \ )
Embedded
System#1 [ | Embedded System #3 /
! J System #2 f \
\ \ ) \ \ J
N Sensor F| A
Sse , esh
S Engine Computer i )




Using Humans

* Can you convince/entice/trick the human to do
some computational tasks which would be
otherwise hard to do given input sensor data?

(

Server #1

(

wrong with people?....
| will form part of a
transducer and do
some computation.”

“Uck. This bathroom 7m \
is disgusting. What is AD

* Don’t need to worry about designing some
complicated sensor network to deduce

3/16/23 6.9000 SP23 55



Update our Big ldea

* Most modern computational devices take on this form*:

R — e e — N ommm———————
| Outside Y Electrical Domain: Y Outside

i Domain: Domain:

: \ 4 ) /

|

|

E \f ~ /

|

i — Sensor * Computation Actuator |~

|

|

| /\ )

1

: / \ /

|

|

I 4

‘\~ __________ '/A\ _______________________________ '/‘\~ -

*There’s always exceptions, so this isn’t a 100% true statement

3/16/23 6.9000 SP23

------------_’

56



Update our Big ldea

* While the general pattern has remained constant since the
1900’s, the scope/breadth of the inputs and outputs has scaled
tremendously...

* In the 1940’s, a computation block would take in several hand-
entered numbers and maybe solve some third/fourth order
differential equation and return the coefficients as a result

* |In the 2020’s, a computation block may take in Gbps of video,
audio, environmental, meta data and control entire fleets of
drones and direct vehicles and keep you entertained/engaged
with random stuff



The Flow of Data

e Data being processed usually gets
scaled/compressed/interpreted the further into
your compute pipeline.

A

Amount of bits

v

Progress into Computation Pipeline



Distributing Your Algorithm Over the
System

* How early you start compression impacts how much data
needs to move between each link in your computation
chain

Embedded
System #1

Sensor

] Server#1 @»| Server#2 [ €» PC/Phone
Engine

.
!




Front-Load Computation

Theoretical e Pros?
Computatlonal .
’ ”Algorlthm” 0 * Cons?
(t)d[ 29
Sen§or Embedded | || ggrver #1 Server #2 PC/Phone
Engine System #1
Data

Amount of bits

o
|



Tiny ML/Edge Al

* Traditionally ML etc. was deployed in servers, so a
lot of raw data would need to get sent up over
network

* TinyML and associated fields have looked into
extracting meaning from large data sets in efficient
manners using embedded-type hardware

* Result is you need to send much less data over the
network:
* Saves money
* Saves energy



Back-Load Computation

* Pros?
e Cons?

i

stem #

Amount of bits

3/16/23

6.9000 SP23



Conclusion

* There are a lot of choices to be made



