

Lecture 9 March 9, 2023

TODAY

- Sensors, using temperature as an example
- MILO air quality sensors

Tuesday we'll have a discussion about occupancy sensing

Why sensors

The HW/SW systems we create often/always have to interact with the outside world

- They need to sometimes take in information *aka* **sense**
- Sometimes they need to act on the world *aka* actuate
- These are two sides of the same thing **transducers...** ...but we'll focus on sensors here

Sensors

For HW/SW systems, we always need to convert a physical quantity into an electrical signal and ultimately (usually) into bits

- Most commonly voltage or time
- Less often in to current (charge), magnetic flux (less commonly) or photons, etc.

Ultrasonic distance sensor

Plantower PMS series [1003, 3003, etc.]

Sensirion SGP41

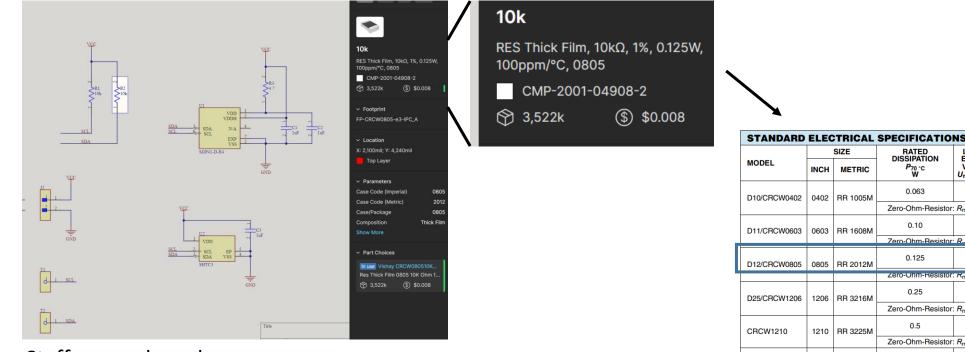
FLIR module

Today's focus: temperature sensing

The "hello world" of sensing

- Very common and very important for many applications... ...including MILO, Valerie
- Lots of ways to do it everything is a temperature sensor
- Illustrates key sensor selection principles and tradeoffs

- Like most quantities we care about, several different transduction approaches
 - Same with air quality...and occupancy..
- To select among approaches, it helps to understand how they work
 - To understand technical tradeoffs (not so much about cost)


Several common ways to measure temperature

- Most common: via resistance
- Less common: turning temperature directly into voltage
- Coolest: via bandgap

Temperature-varying resistors

• Every resistor you buy has a resistance that varies with temperature

R = R(T)

Datasheet

		SIZE	BATED	LIMITING				
MODEL	INCH	METRIC	DISSIPATION P70 °C W	ELEMENT VOLTAGE Umax. AC/DC	TEMPERATURE COEFFICIENT ppm/K	TOLERANCE %		SERIES
D10/CRCW0402	0402	RR 1005M	0.063	0.063 50 ± 100 ± 200		± 1 ± 5	1R0 to 10M	E24; E96 E24
			Zero-Ohm-Resistor	: <i>R</i> _{max.} = 20 mΩ	g, I _{max.} at 70 °C = 1.	5 A		
D11/CRCW0603	0603	RR 1608M	0.10	75 ± 100 ± 200		± 1 ± 5	1R0 to 10M	E24; E96 E24
			Zero-Ohm-Resistor	R = 20 mC	/at 70 °C = 2	n A		
D12/CRCW0805	0805	RR 2012M	0.125	150	± 100 ± 200	± 1 ± 5	1R0 to 10M	E24; E96 E24
			Zero-Onm-Resistor	$R_{\text{max.}} = 20 \text{ ms}$	5 A			
D25/CRCW1206	1206	RR 3216M	0.25	200	± 100 ± 200	± 1 ± 5	1R0 to 10M	E24; E96 E24
			Zero-Ohm-Resistor	: R _{max.} = 20 mΩ	g, I _{max.} at 70 °C = 3.	5 A		
CRCW1210	1210	RR 3225M	0.5	200	± 100 ± 200	± 1 ± 5	1R0 to 10M	E24; E96 E24
			Zero-Ohm-Resistor	$R_{\text{max.}} = 20 \text{ m}\Omega$, I _{max.} at 70 °C = 5.	0 A		
CRCW1218	1218	RR 3246M	1.0	200	± 100 ± 200	± 1 ± 5	1R0 to 2M2	E24; E96 E24
			Zero-Ohm-Resistor	: R _{max.} = 20 mΩ	g, I _{max.} at 70 °C = 7.0	0 A		
CRCW2010	2010	RR 5025M	0.75	400	± 100 ± 200	± 1 ± 5	1R0 to 10M	E24; E96 E24
			Zero-Ohm-Resistor: R _{max.} = 20 mΩ, I _{max.} at 70 °C = 6.0 A					
CRCW2512	2512	RR 6332M	1.0	500	± 100 ± 200	± 1 ± 5	1R0 to 10M	E24; E96 E24
			Zero-Ohm-Resistor	$R_{\rm max.} = 20 \ {\rm m}\Omega$	g, I _{max.} at 70 °C = 7.0	0 A		

Staff sensor board

Temperature-varying resistors

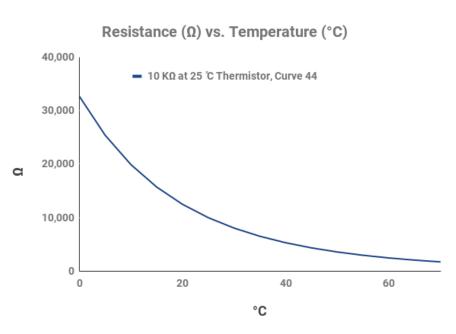
• Every resistor you buy has a resistance that varies with temperature R = R(T)

Temperature Coefficient of Resistance (TCR) $TCR = \frac{R(T_2) - R(T_1)}{R(T_1)(T_2 - T_1)} [ppm/°C] T_1$ is typically 25 °C

$$R(T_2) = R(T_1) (1 + TCR \cdot (T_2 - T_1))$$

For our 10k resistor from sensor board, at $T_2 = 100 \,^{\circ}C$: $R(T_2) = 10k(1 + 100e^{-6} \cdot (75^{\circ}C))$ $R(T_2) = 10k(1.0075) = 10.075k$

good for us...but not a great sensor


Thermistor

Instead...make a resistor with a really large TCR

- Thermistor = temperature-sensitive resistor
- Two-terminal device, avail in small SMT package
- Composite material of metallic oxides
- Inexpensive (~\$0.04 @ 1k)
- NTC = negative temperature coefficient [of resistance]
- This is a nonlinear characteristic, so going from $R \rightarrow T$ requires some work
 - Multiple approaches depending on desired accuracy

$$\beta = \frac{\ln(\frac{R1}{R2})}{(\frac{1}{T1} - \frac{1}{T2})}$$

• Though sometimes the absolute temperature doesn't matter, just trying to keep a system near a reference temperature

NTC thermistor

- How to convert resistance (change) into something we can act on?
- Typically we prefer to measure voltages (rather than currents)
 - Think, ADC on a MCU

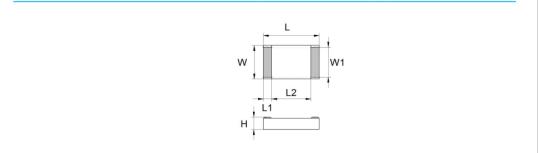
\rightarrow use V = IR(T)

- Need at least one other resistor (or a good current source)
- May use a bridge circuit (see later)
- Issues
 - Extra components \rightarrow increased cost, space
 - Current for measurement will induce some heating → and thus error
 - Self heating

RTD thermistor

- RTD: resistance temperature detectors
- Pure material (like Pt)
- Available in SMT package
- Much more expensive than NTC
 - \$0.9898 @1k quantities
- Broader range esp. to high temperature
- Sensitivity < NTC
- Much more linear
- Measurement circuits similar to NTC

P1K0.0805.1FC.B FlipChip platinum sensor


For the automatic assembling on PCB by soldering or bonding

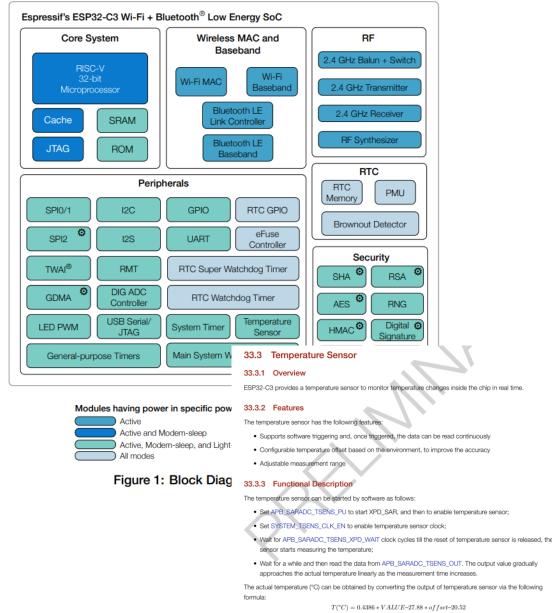
Benefits & Characteristics

- Excellent long-term stability
- Low self-heating Fast response time

Illustration¹⁾

- Minimum space consumption on PCB
- Optimal price-performance ratio

Thermocouples


- Not a resistive temperature sensor!
- Directly converts temperature differences into voltage differences
- Mechanism involves thermoelectricity: via connecting two materials with different thermoelectric coefficients
 - Thermoelectric = coupling between thermal (ΔT) and electric (ΔV) domains $-\nabla \phi = \alpha_s \nabla T$
- This also used (in reverse) for Peltier heaters
- Can go to **really high** temperatures (2000+ K)
- Not very common in integrated systems (put we'll see one on Tue)

Bandgap temperature sensors

• Use physics intrinsic to semiconductors

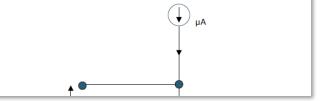
pn junction (diode) $\frac{V_D}{kT}$ equation $I = I_0(e^{\frac{V_D}{kT}} - 1)$

- If you already have diodes or transistors, can easily incorporate
- Good to about ~200 °C
- Often included "for free" in a MCU
 - Including ESP32C3
 - But only measures temperature of the MCU...
 - And will be affected by power dissipation in MCU
- Measured via ADC, either on-chip or separate
 - ESP32C3 has two 12-bit ADCs

Temperature sensors

• Some comparisons, from \rightarrow

Temperature sensing fundamentals


TEXAS INSTRUMENTS

Introduction to Temperature Sensing

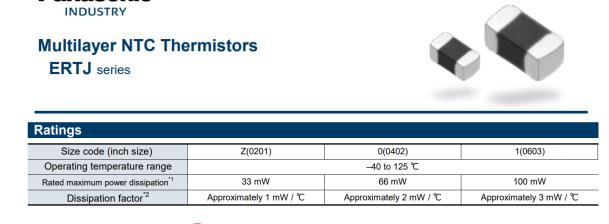
In embedded systems, there is a constant need for higher performance and more features in a smaller form factor. This requires system designers to **monitor** the overall temperature to ensure safety and **protect** ogging further

rement to not

	IC Sensor	Thermistor	RTD	Thermo couple
Range	–55°C to +200°C	−100°C to +500°C	–240°C to 600°C	–260°C to +2300°C
Accuracy	Good / Best			Better
Footprint / Size	Smallest	Small	Moderate	Large
Complexity	Easy	Moderate	Complex	Complex
Linearity	arity Best Low		Best	Better
Topology	blogy Point-to- point, Multi- drop, Daisy point Chain		Point-to- point	Point-to- point
Price	Price Low to Low Moderate Moder		Expensive	Expensive

In sensing, we want to choose/design an approach... And ultimately choose a **specific** component

How do we pick? **Specs**

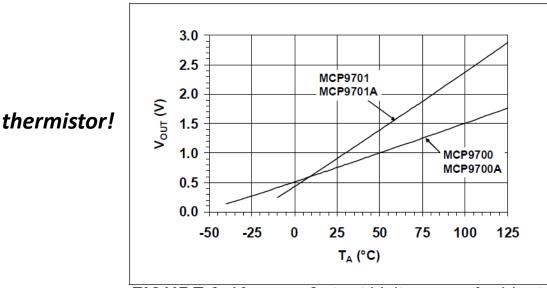

For those who **really** care, there can be lots of specs for any particular sensor...

...this is one reason that data sheets can get really long

...as the designer, you need to figure out the ones you care about

A partial list – these are common to many sensors (not just temperature!)

- Range
 - The range [min, max] over which the sensor is designed to operate
- Sensitivity
 - The slope (may be local) of the inputoutput characteristic



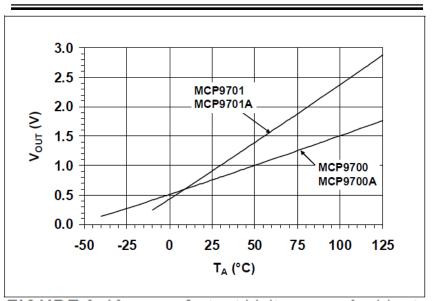
Panasonic


Low-Power Linear Active Thermistor ICs

Not a thermistor!

A partial list – these are common to **many** sensors (not just temperature!)

- (non)Linearity
 - For sensors with nominally linear inputoutput relationship,
 - typically the maximum deviation from the straight line



A partial list – these are common to **many** sensors (not just temperature!)

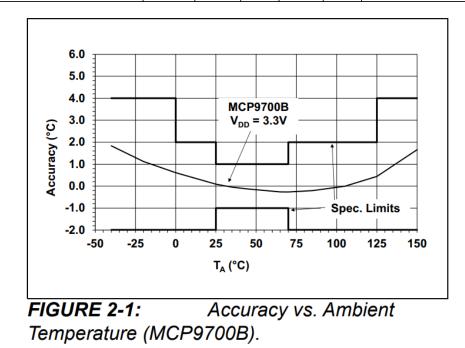
- (non)Linearity
 - For sensors with nominally linear inputoutput relationship,
 - typically the maximum deviation from the straight line

Low-Power Linear Active Thermistor ICs

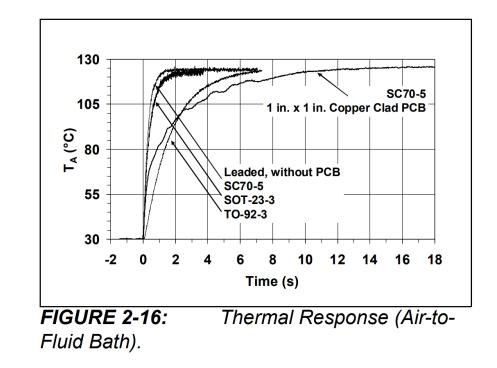
DC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated: MCP9700/9700A/9700B: $V_{DD} = 2.3V$ to 5.5V, GND = Ground, $T_A = -40^{\circ}C$ to $+125^{\circ}C$ and No load MCP9701/9701A: $V_{DD} = 3.1V$ to 5.5V, GND = Ground, $T_A = -10^{\circ}C$ to $+125^{\circ}C$ and No load							
Parameter Sym. Min. Typ. Max. Unit Condit							
Output Voltage, T _A = 0°C	V _{0°C}	—	400		mV	MCP9701/9701A	
Temperature Coefficient	Т _С	—	10.0	_	mV/°C	MCP9700/9700A/9700B	
	Τ _C		19.5		mV/°C	MCP9701/9701A	
Output Nonlinearity	V _{ONL}	—	±0.5		°C	T _A = 0°C to +70°C (Note 3)	
Output Current	IOUT	—	—	100	μΑ		
Output Impedance	Z _{OUT}	—	20	—	Ω	I _{OUT} = 100 μA, f = 500 Hz	
Output Load Regulation	ΔV _{OUT} / ΔΙ _{ΟUT}	—	2	_	Ω	$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$ $I_{OUT} = 100 \ \mu A$	
Turn-On Time	t _{ON}	—	800	_	μs		
Typical Load Capacitance	C _{LOAD}	—	—	1000	pF	Note 4	
SC-70 Thermal Response to 63%	t _{RES}	—	1.3	_	s	30°C (Air) to +125°C	
TO-92 Thermal Response to 63%	t _{RES}	—	1.65	_	S	(Fluid Bath) (Note 5)	

A partial list – these are common to **many** sensors (not just temperature!)


- Accuracy
 - Deviation from the **true** result
 - This can sometimes be improved via calibration

Low-Power Linear Active Thermistor ICs


Sensor Accuracy (Notes 2, 3	3)		•			
T _A = +25°C	T _{ACY}	—	±1	—	°C	
$T_A = +20^{\circ}C \text{ to } +70^{\circ}C$	T _{ACY}	-1.0	±0.5	+1.0	°C	MCP9700B
$T_A = -40^{\circ}C$ to $+125^{\circ}C$	T _{ACY}	-2.0	±0.5	+4.0	°C	MCP9700B
$T_A = 0^{\circ}C$ to +70°C	T _{ACY}	-2.0	±1	+2.0	°C	MCP9700A/9701A
$T_A = -40^{\circ}C$ to $+125^{\circ}C$	T _{ACY}	-2.0	±1	+4.0	°C	MCP9700A
T _A = -10°C to +125°C	T _{ACY}	-2.0	±1	+4.0	°C	MCP9701A
$T_A = 0^{\circ}C$ to +70°C	T _{ACY}	-4.0	±2	+4.0	°C	MCP9700/9701
T _A = -40°C to +125°C	T _{ACY}	-4.0	±2	+6.0	°C	MCP9700
T _A = -10°C to +125°C	T _{ACY}	-4.0	±2	+6.0	°C	MCP9701
$T_{A} = -40^{\circ}C \text{ to } +150^{\circ}C$	T _{ACY}	-4.0	±2	+6.0	°C	MCP9700 High Temperature (Note 7
$T_{A} = -40^{\circ}C \text{ to } +150^{\circ}C$	T _{ACY}	-4.0	±2	+4.0	°C	MCP9700B High Temperature (Note 4

- Response time
 - How fast will sensor output change due to sensor input change
 - For analog sensors, this may be expressed as a time constant
 - For sensors with digital output, may be the time between updates
 - May also be expressed in terms of frequency response

DC ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated: MCP9700/9700A: V _{DD} = 2.3V to 5.5V, GND = Ground, T _A = -40°C to +125°C and No load MCP9701/9701A: V _{DD} = 3.1V to 5.5V, GND = Ground, T _A = -10°C to +125°C and No load							
Parameter Sym. Min. Typ. Max. Unit Conditions							
Output Current	I _{OUT}	_	_	100	μA		
Output Impedance	Z _{OUT}	_	20	_	Ω	I _{OUT} = 100 μA, f = 500 Hz	
Output Load Regulation	ΔV _{OUT} / ΔI _{OUT}	—	1	_	Ω	T _A = 0°C to +70°C I _{OUT} = 100 μA	
Turn-On Time	t _{ON}	_	800	_	μs		
Typical Load Capacitance	CLOAD	_	_	1000	pF	Note 4	
SC-70 Thermal Response to 63%	t _{RES}	_	1.3	—	s	30°C (Air) to +125°C	
TO-92 Thermal Response to 63%	t _{RES}	_	1.65	_	s	(Fluid Bath) (Note 5)	

- Stability, repeatability, long-term drift
 - If I make the same measurement 3 times, will I get the same result?
 - Will the result today be the same as it is in 1 minute, 1 day, 1 year, 10 years?
- Cost
- Size

Datasheet SHTC3 Humidity and Temperature Sensor IC

- Ultra-low power consumption
- Full battery supply voltage range (1.62 3.6 V)
- Small DFN package: 2 × 2 × 0.75 mm³
- Typical accuracy: ±2 %RH and ±0.2 °C
- Fully calibrated and reflow solderable
- Power-up and measurement within 1 ms
- NIST traceability

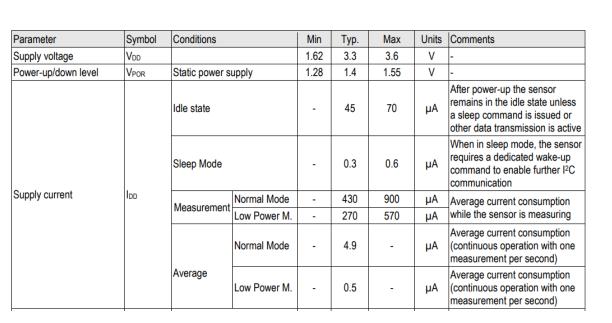
Temperature

Parameter	Condition	Value	Unit
Acouroov toloropool	Тур.	±0.2	°C
Accuracy tolerance ¹	Max.	see Figure 3	°C
Repeatability ²	-	0.1	°C
Resolution ³	-	0.01	°C
Specified range ⁴	-	-40 to +125	°C
Response time ⁸	τ <mark>6</mark> 3%	<5 to 30	s
Long-term drift 9	Тур.	<0.02	°C/y

Table 2 Temperature sensor specifications.

- Current/power consumption
 - This is critical for battery-operated systems!
- Supply voltage
 - Is sensor voltage same as other components, or do you need to create a second supply voltage?

MCP970X


Low-Power Linear Active Thermistor ICs

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated: MCP9700/9700A/9700B: V_{DD} = 2.3V to 5.5V, GND = Ground, T_A = -40°C to +125°C and No load **MCP9701/9701A:** V_{DD} = 3.1V to 5.5V, GND = Ground, T_{A} = -10°C to +125°C and No load Unit Min. Max. Conditions Parameter Sym. Typ. **Power Supply Operating Voltage Range** V_{DD} 2.3 5.5 V MCP9700/9700A/9700B ____ 3.1 5.5 V MCP9701/9701A VDD _ 6 **Operating Current** 12 _ μA IDD T_A = +150°C (Note 1) IDD 15 μA _ _ $\Delta^{\circ}C/\Delta V_{DD}$ 0.1 °C/V Line Regulation ____ _

Datasheet SHTC3 Humidity and Temperature Sensor IC

- Ultra-low power consumption
- Full battery supply voltage range (1.62 3.6 V)
- Small DFN package: 2 × 2 × 0.75 mm³
- Typical accuracy: ±2 %RH and ±0.2 °C
- Fully calibrated and reflow solderable
- Power-up and measurement within 1 ms
- NIST traceability

Packaging

Sensors must interact with the variable being measured

- Sometimes this is easy
 - Inertial sensors (acceleration, rotation) are easiest because those forces transmit through objects
- But usually this is not easy...

and sometimes it is really hard

- Examples
 - A temperature sensor embedded in MCU can't measure temperature somewhere else
 - Humidity sensors have to interact with outside air
 - A rain sensor must sense...water!
 - A light sensor must have optical access

Packaging – example for SHTC3

- 7-page design guide for packaging temperature (and humidity sensors)
 - This will necessarily require domain knowledge
 - Thermal design, mechanical design, etc.

1) Sensor has good access to environment

Housing

Figure 1: A large opening in the housing provides good access to environment and allows for air exchange.

2) Sensor is sealed from air entrapped in housing

Figure 2: Sealing of the sensor compartment towards the remaining housing minimizes the influence of entrapped air on the sensor.

3) Dead volume enclosed around sensor is small

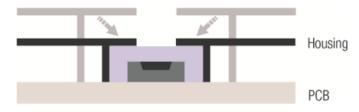


Figure 3: A small dead volume allows for rapid adaption to changes in the environment.

4) Sensor is decoupled from heat sources Heat Source

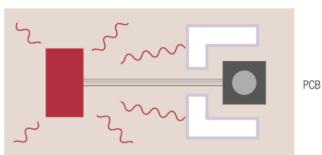


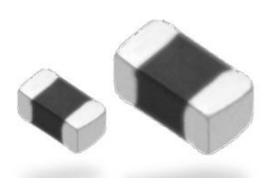
Figure 4: Decoupling of the sensor from heat sources in the PCB minimizes the influence of internal heating on the sensor.

Signal conditioning and conversion

- The designer has to consider how to connect the sensor to the rest of the system
- Do you want analog or digital data?
- Occasionally, you want an analog signal
 - Ex: for analog temperature compensation
 - Ex: sometimes cheaper

Signal conditioning and conversion

- If analog signal isn't already a voltage (aka RTD, thermistor), usually convert to voltage
 - Often via bridge circuit
- Might need to filter to reduce noise
 - RC, Sallen-Key, etc.
 - As always, tradeoff between amount of hardware vs. amount of software
- Best to make signal take full range of ADC
 - May require gain [or signal attenuation]
 - Many MCUs have on-board ADCs, or can use dedicated ADC
 - Need to consider number of bits, etc. [we won't get into this]

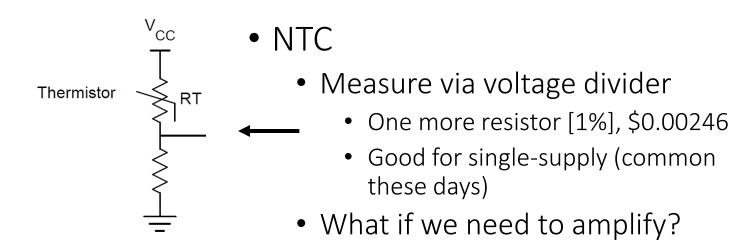


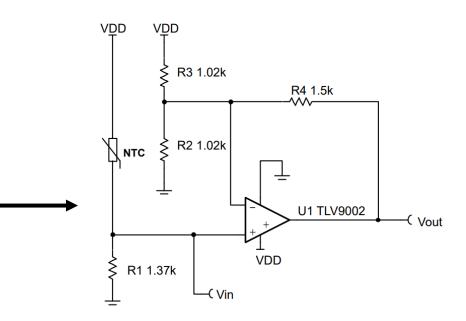
Signal conditioning and conversion

- A digital sensor will likely output via common protocol
 - I2C most common
 - Only requires 2 [extra] pins (SDA, SCL)
 - Limits on I2C
 - No more than 128 unique devices on network
 - Make sure no two devices have same address...
 - But you'll find other protocols around
 - 1-Wire, UART, SPI

Example: compare two approaches

- NTC (Thermistor) vs. Bandgap-referenced digital output
- Assume we are fine with measurement on a PCB
 - So SMT packages are used for both
- NTC
 - Panasonic ERT-J series
 - Range -40 to 125 °C
 - Nominally 10k resistance
 - Package 0201 [0.6 x 0.3 x 0.3 mm]
 - \$0.0356 @ 1k




- Bandgap
 - UMW LM75BDP
 - Range -55 to 125 °C
 - I2C comms
 - Package 8-pin TSSOP [3 x 5 x 1.1 mm]
 - \$0.345 @ 1k

Compare two approaches

input

• Cheap TLV9002 op-amp

1 op-amp + 3 resistors

- \$0.282 @ 1k
- 8-TSSOP [3 x 4.4 x 1.2 mm]

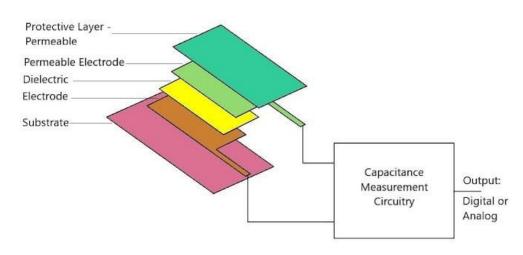
• Now we need non-inv op-amp

• To adjust output to span ADC for given

 Smaller packages avail, but more \$\$

Compare two approaches

- NTC
 - Cost
 - NTC \$0.0356 @ 1k
 - 4 resistors \$0.00984 @ 1k
 - 1 IC \$0.282 @ 1k
 - Assembly \$0.0017 x 18 joints
 - Total: \$0.341
 - Size
 - 8-TSSOP [3 x 4.4 x 1.2 mm]
 - +passives, traces,
 - So probably around similar size


- Bandgap
 - Cost
 - \$0.345 @ 1k
 - Assembly \$0.0017 x 8 joints
 - Total: \$0.359
 - Size
 - Package 8-pin TSSOP [3 x 5 x 1.1 mm]

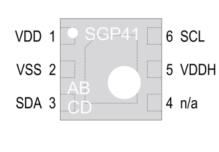
Compare two approaches

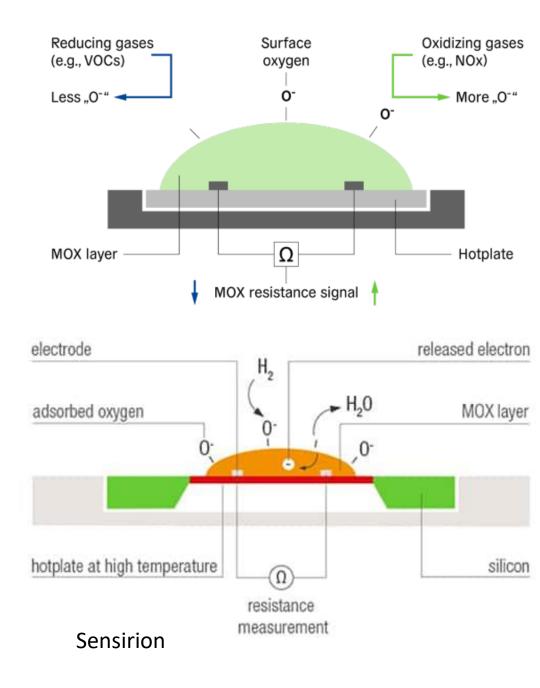
- So how to choose?
 - May be on specs
 - Maybe having a linear output, or accuracy is really important
 - Or other issues
 - Maybe don't need to amplify, and cost is driver, and so thermistor makes sense
 - Maybe don't want to spend extra for MCU with ADC
 - Maybe don't want to use two MCU pins for I2C
 - Only use one pin for ADC

MILO sensors: humidity

- Capacitive humidity sensor (like in SHTC3)
- Parallel plate capacitor: $C = \frac{\epsilon A}{d}$
- Create capacitor with dielectric (ε) that absorbs water (hygroscopic)
 - $\epsilon_{water} \approx 80 \gg \epsilon_{dielectric}$ • C 1 as humidity 1
- And then we need a circuit that measures capacitance
- There are also *resistive* humidity sensors (and probably other mechanisms), but capacitive is most common

Relative Humidity

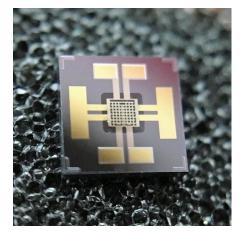

Parameter	Condition	Value	Unit
	Тур.	±2.0	%RH
Accuracy tolerance ¹	Max.	see Figure 2	%RH
Repeatability ²	-	0.1	%RH
Resolution ³	-	0.01	%RH
Hysteresis	-	±1	%RH
Specified range ⁴	extended⁵	0 to 100	%RH
Response time6	τ 63%	8	S
Long-term drift7	Typ.	<0.25	%RH/y

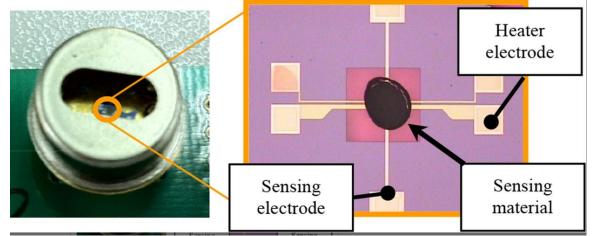

 Table 1 Humidity sensor specifications.

MILO sensors: VOC/NOx

- Related to humidity sensor
- Resistive sensor (not capacitive)
- Uses metal oxide (MOX) layer
 - SnO₂ [most common], TiO₂, ZnO, In₂O₃
 - Reacts with target gas when heated to 150 °C – 400 °C
- Resistance
 - Increases due to oxidizers like NOx
 - Decreases due to reducing agents like VOCs

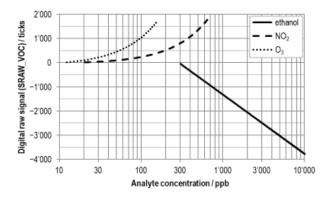
Pin	Name	Comments
1	VDD	Supply voltage
2	VSS	Ground
3	SDA	Serial data, bidirectional
4	n/a	Connect to ground (no electrical function)
5	VDDH	Supply voltage, hotplate
6	SCL	Serial clock, bidirectional




Sensirion SGP41

MILO sensors: VOC/NOx

- How to heat to 100's °C while conserving power?
 → use an isolated "hotplate"
- These sensors will change resistance due to **any** reducing or oxidizing gases
 - They exhibit low **selectivity**
- SGP41 has two sensors (pixels), one more specific to VOC, one to NOx (details not provided!)
- SGP41 includes "conditioning" step which is likely heating the hotplate really hot to "reset"


Micralyne

MILO sensors: SGP41

		Values						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Comments		
Supply voltage, hotplate supply voltage9	VDD, VDDH	1.7	3.3	3.6	V	Minimal voltage must be guaranteed also for the maximum supply current specified in this table. VDD and VDDH must be connected to the same power supply, see Figure 6 .		
Idle current	IDD	-	34	105	μА	The idle mode is activated after power-up, after calling the <i>sgp4x_turn_heater_off</i> command, or after a soft reset.		
Supply current during conditioning mode ¹⁰		-	6.5	7.2	mA	Average current consumption while the sensor is continuously operated at VDD, VDDH = 1.8 V.		
		-	4.2	4.6	mA	Average current consumption while the sensor is continuously operated at VDD, VDDH = 3.3 V.		
Supply current during VOC+NO _x measurement mode ¹⁰		-	4.3	4.8	mA	Average current consumption while the sensor is continuously operated at VDD, VDDH = 1.8 V.		
		-	3.0	3.4	mA	Average current consumption while the sensor is continuously operated at VDD, VDDH = 3.3 V.		
Communication	-	Digital 2-v	vire interfac	e, I ² C				

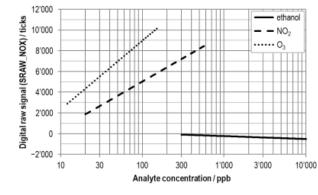
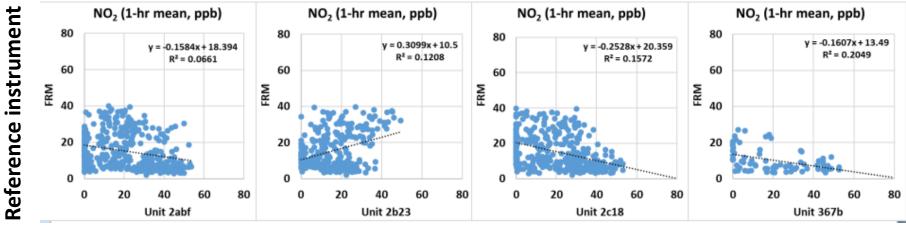


Figure 2 Typical sensor response by the VOC signal to ethanol, NO₂, and O₃ normalized to 500 ppb of H₂ + 500 ppb of ethanol. Data were recorded at 25 °C and 50 % RH and a power supply of VDD of 3.3 V.

Figure 3 Typical sensor response by the NO_x signal to ethanol, NO₂, and O₃ normalized to 500 ppb of H₂ + 500 ppb of ethanol. Data were recorded at 25 °C and 50 % RH and a power supply of VDD of 3.3 V.


			I			
Parameter	Conditions	Min.	Тур.	Max.	Units	
Output signal	VOC Index, processed value from SRAW_VOC		-	500	VOC Index points	
range ²	NOx Index, processed value from SRAW_NOX		-	500	NO _x Index points	
	SRAW_VOC, digital raw value from VOC pixel		-	65'535	ticks ³	
	SRAW_NOX, digital raw value from NOx pixel	0	-	65'535	ticks	
Measurement	Ethanol in clean air	0	-	1'000'000	ppb	
range	NO ₂ in clean air	0	-	10'000	ppb	
Specified range	Ethanol in clean air	500	-	10'000	ppb	
	NO ₂ in clean air	50	-	650	ppb	
Device-to-device variation ⁴	VOC Index		<±15 <±15	-	VOC Index points or % m.v. (the larger)	
	NO _x Index	-	<±50 <±50	-	NO _x Index points or % m.v. (the larger)	
Repeatability ⁴	VOC Index	-	<±5 <±5	-	VOC Index points or % m.v. (the larger)	
	NO _x Index	-	<±5 <±5	-	NO _x Index points or % m.v. (the larger)	
Limit of detection ^{5,6}	Ethanol in 500 ppb of ethanol ⁷ and 0 ppb of NO ₂ in else clean air		-	<50 or <10	ppb or % of concentration setpoin	
	NO2 in 500 ppb of ethanol7 in else clean air		-	<20 or <10	(the larger)	
Response time τ_{63}	SRAW_VOC, changing concentration from 5'000 to 10'000 ppb of ethanol at sampling interval of 1 s	-	<10	-	S	
	SRAW_NOX, changing concentration from 150 to 300 ppb of NO ₂ at sampling interval of 1 s	-	<250	-	S	

MILO sensors: SGP41

- There is no accuracy spec...these are not traceable, though you can calibrate them
- This is fairly notorious in consumer products...

Plume Flow 2

Plume Flow 2