

Lecture 3 February 14, 2023

This week

- EX01
 - Pebble wrap-up *aka* first team exercise
 - MILO sensor board schematic design
 - Valerie concept development
- Lab 2
 - Sensor board schematic review
 - Valerie concept discussion

Calendar : MILO																										
Last updated: Feb 3,	202			Feb	6			Fe	eb 13			Fe	b 20			Fe	b 27			Ma	ar 6			Mar	13	
		6	7	8	9	10	13	14	15 16	17	20	21	22 2	3 24	27	28	1 2	3	6	7	8 9	10	13	14 15	16	17 2
		М	T	w	Th	F	М	Т	WT	I F	М	T	WΤ	hF	Μ	T	wπ	h F	Μ	ΤV	V Th	۱F	Μ	ΤW	Th	FI
	Exercises						E	X01			E	X02				EX03			E	X04			E	X05		
	Labs					L1				L2				L3				L4				L5				L6
Task																										
Sensor subsystem	schematic capture																									
	pcb board layout																									
	board files due for fabrication																									
	recieve boards																									
	assemble																					4				
	test																									
MCU subsystem	schematic capture																									
	pcb board layout																									
	board files due for fabrication																									
	recieve boards																									
	assemble																									
	test																									
PM subsystem	schematic capture																									
	pcb board layout																									
	board files due for fabrication																									
	recieve boards																									
	assemble																									
	test																	_								
Firmware	prototype																									
	implement on sensor board																									
	A																									

Task												
Concept development	conception											
	specifications											
	ethical computing protocol											
Team	teams formed											
	team name											
	team roles											
	project plan											
Engineering design	system architecture											
	prototyping			draft	t actual	l is up t	o team	7				
	detailed design					d	raft a	actual	is up to	team		
	PCB submission dates											
Testing and verification	T&V plan					d	raft a	actual	is up to	team		
	subsystem test											
	full system test											
		work										

TODAY

- The HW/SW product development process with a focus on engineering design
- MILO

"In preparing for battle I have always found that plans are useless, but planning is indispensable" --Dwight D. Eisenhower

• Many different specific processes, terminology, number of steps, and so on, but generally

- Concept development: identify requirements, establish target specifications, generate concepts, refine and select most promising concept
- Engineering design: develop product's system-level architecture, partition into subsystems, design subsystems, prototype subsystems, integrate back into system
- Testing & verification: Evaluate the subsystems and complete system, verifying that it meets spec
- Production ramp-up: Transfer to manufacturing, verify quality, ramp up production, commercialization

- There are classes at MIT that focus on different aspects of this process
- It's too much for a single class!

• This process is not linear...iteration will be necessary

- But the farther you go to the right, retrenching gets more \$\$\$
- So the more you can figure out early on...the better

• Each step takes different amounts of time, depending on product, market, etc.

• Here is Milwaukee Tool's product development process

• Here is Bolt.io's HW/SW product development process

• You may also hear about "waterfall" and "agile"

https://www.soldevelo.com/

https://medium.com/@chathmini96/waterfall-vs-agilemethodology-28001a9ca487

This stuff gets quasi-religious... ...in practice it's often a mix

The two most important points of today:

Have a plan
 Write stuff down

HW/SW product development

What's special about HW/SW products?

- They have commonly recurring sets of specifications
- Prototyping nowadays is easier & faster than in some other sectors
 - And in the past
- You can often change the SW after the product goes out...kinda hard to change the HW!
 - This makes part of the product static (HW) and part dynamic (SW) \rightarrow we can use that!
 - In fact, the ability to update the firmware is often an important requirement → implies some sort of connectivity, typically wireless
 - A great example of SW requirement impacting HW (need radio transceiver on-board)

OK, let's get started

- Air ideally is
 - 78% N₂
 - 21% O₂
 - 0.9% Ar
 - 0.03% CO₂
 - Water vapor
 - Trace gases

Anything else is undesirable... such as

- Reactive species
- Aerosols
- Dust

Why do we care?

- Harms human health
- Damages ecosystem
- Contributes to climate change

Air pollution was responsible for 5.5 million deaths in 2013

Source:

 Forouzanfar MH, et al. Global, regional, and national comparative risk assessment of 79 behavioral, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015 Dec 5;386(10010):2287-323.

 Brauer M, et al. Ambient air pollution exposure estimation for the Global Burden of Disease 2013. Environmental Science & Technology. 2016 Jan 5;50(1):79-88.

W UNIVERSITY of WASHINGTON

Indoor and outdoor air quality

- Indoor air is not just outdoor air
- Sources of pollutants differ

Sources of Indoor Pollutants

Copyright @ 202' Delos Living LLC. All rights reserved.

Cdelos

Smoke from Oak Fire prompts Bay Area air quality advisory, chokes Sierra Nevada

California's biggest 2022 wildfire has burned more than 18,000 acres

The Mercury News

JERSEYDALE, CALIFORNIA - JULY 24: A column of smoke rises above the Oak Fire on July 24, 2022 near Jerseydale, California. The fast moving Oak Fire burning

THE CLIMATE 202

Gas stove pollution causes 12.7% of childhood asthma, study finds

Analysis by <u>Maxine Joselow</u> with research by Vanessa Montalbano

January 6, 2023 at 7:30 a.m. EST

Calls for post-Covid 'revolution' in BBC building air quality

Chinese capital issues first smog alert of winter

A thermal power plant is seen near residential buildings in Beijing, China November 21, 2018. Picture taken November 21, 2018. REUTERS/Jason Lee

Why measure?

- We can do something about it
 - Clean air, turn on fan, open window, etc.
 - Inform policy, legislation
- We can learn about health effects
 - Measure exposures, correlate to outcomes
 - Beyond zip-code level, can we get to street-level, building-level, personal exposure monitoring?

- Why measure locally, frequently?
 - Air quality can change block by block, and hour by hour
 - Get to accurate & precise exposure monitoring

North Vancouver–Moodyville Air Quality Monitoring Study (2016)

Apte Research Group

What exactly are we trying to measure?

- Multiple classes: primarily arise primarily from combustion: cars, trucks, tobacco smoke, cooking, etc.
 - Nitrogen oxides $(NO_x: NO + NO_2)$
 - Sulfur dioxide (SO₂)
 - Particulate matter (PM)
 - Complex mixture of solid and liquid particles of organic and inorganic substances suspended in the air
 - Are also derived via reactions of SO_2 , NO_x , etc.
 - Classified by size
 - PM₁₀: particles with a diameter of 10 microns or less
 - PM_{2.5} particles with a diameter of 2.5 microns or less
 - Volatile organic compounds (VOCs)
 - Higher indoors
 - Acetone, benzene, formaldehyde, etc.
 - Ozone O₃
 - Arises via reaction of sunlight + volatile organic compounds (VOCs) and NOx
 - Carbon monoxide (CO)

That's a lot of stuff to measure...

- Need to condense down into simple metric that *people* can understand: air quality index (AQI) → scalar rather than vector
- Overall agreed-upon metric for reporting air quality
 - Comprised of $PM_{2.5}$, PM_{10} , NO_2 , SO_2 , CO, O_3 [1h & 8h]
 - Quantities averaged over 1h, 8h, 24h
 - Piecewise-linear model for each pollutant
 - Overall AQI = highest (worst) AQI of all measures

Moderate Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who

are unusually sensitive to air pollution.

Primary Pollutant: PM2.5 (Particulate matter less than 2.5 microns)

Category	AQI	ΡΜ _{2.5} (μg/m ³) 24hr avg	PM ₁₀ (μg/m ³) 24hr avg	NO ₂ (ppb) 1hr avg	SO ₂ (ppb) 1hr avg	CO (ppm) 8hr avg	O ₃ (ppb) 8hr avg	O ₃ (ppb) 1hr avg
Good	050	012.0	054	053	035	04.4	054	-
Moderate	51100	12.135.4	55154	54100	3675	4.59.4	5570	-
Unhealthy for Sensitive Groups	101150	35.555.4	155254	101360	76185	9.512.4	7185	125164
Unhealthy	151200	55.5150.4	255354	361649	186304	12.515.4	86105	165204
Very Unhealthy	201300	150.5250.4	355424	6501249	305604	15.530.4	106200	205404
Hazardous	301500	250.5500.4	425604	12502049	6051004	30.550.4	-	405604

https://blue.cs.sonoma.edu/cs115/F17/proj/p1/cs115_p1.html

MILO: concept development

- Concept development: identify requirements, establish target specifications, generate concepts, prototyping (as needed), refine and select most promising concept
- Requirements [needs]
 - Focus on what the system should do, rather than how to do it
- Identify requirements: who's requirements? → stakeholders' requirements
- Stakeholders: the people affected by your product
 - Customer, end-user **←** these often most important
 - But also retailer, employee, installer, etc.

Stakeholders

Customers are not always end-users...

ICU monitor

End-user

MILO: concept development

- Concept development: identify requirements, establish target specifications, generate concepts, prototyping (as needed), refine and select most promising concept
- Requirements [needs]
 - Focus on what the system should do, rather than how to do it
- Identify requirements: who's requirements? → stakeholders' requirements
- Stakeholders: the people affected by your product
 - Customer, end-user **←** these often most important
 - But also retailer, employee, installer, etc.
- For MILO, stakeholders are 6.900 staff, 6.900 students, EDS staff
- What about for Miami-Dade project [aka Valerie]?

MILO: requirements

- Talk with stakeholders (esp. customers and end-users)
- Assemble list of requirements
- If extensive, organize into hierarchy
- Prioritize
 - Must have vs. Should have vs. Might have
 - *** ** *
- Sometimes the customer doesn't know what they want latent need

MILO: requirements

We developed requirements based on internal staff discussions and talking with EDS staff

Why not with students?

- 1. It should accurately measure indoor air quality **
- 2. It should be portable ***
- 3. It should be possible to get the data off the device **
- 4. It should be a useful pedagogical exercise ***
- 5. It should maintain privacy *
- 6. It should be low cost *
- 7. It should be rugged and robust **
- 8. Multiple systems should be able to be used simultaneously ***
- 9. It should be easy to view the current and past data **
- 10. It should leverage MIT facilities **

Valerie: requirements

What do you think?

- 1. It should measure the "heat experience" at each bus stop, at least temperature and humidity, but also could include air quality.***
- 2. It should be able to measure how many people are waiting, and for how long.***
- 3. It should operate without being connected to line voltage. ***
- 4. It should be installable by a technician, and should be easy to set up.***
- 5. It should not be too expensive. *
- 6. Data from a sensor node should be able to be tied to a location.***
- 7. It should maintain privacy. ***
- 8. It should be rugged and able to withstand shipping, setup, and operation in the Miami-Dade environment. ***
- 9. Multiple systems should be able to be used simultaneously. ***
- 10. The system should incorporate data from Swift.ly and present that information to the operator in a useful way. ***

Next up

- You will iterate between concepts, setting specs, and doing design
- Here, we'll start with specs
- In EX01, we'll start with concepts

HW node sketch

This is not a great system diagram – it's pretty generic, no details inside the MCU or server

Web wireframe

Questions:

- What exactly do we need to measure?
- How much will these sensors cost?

...and so on

Next up

- You will iterate between concepts, setting specs, and doing design
- Not everything will necessarily be defined yet (and thus able to be concretely specified)
 - This may not be ok for some products (aerospace, medical) but often the case for consumer, etc. → Iteration can be important
- HW and SW are specified differently
 - We'll see this

Specifications

- Translate requirements into a specification document
 - Covers both HW and SW aspects
 - The goal is to have constraints for our system → engineering is design under constraints
 - If our specs are complete, if we build something that meets spec, then it will meet our requirements
 - Some specifications will directly imply a specific approach
 - The need for interoperability with another product may immediately specify WiFi
 - The company may impose use of MySQL dB or STM32 MCU because that's what's used by the rest of the company
 - Sometimes specifications will be much more open-ended
 - An opportunity for creativity & innovation!

Specifications

- What aspects do we need to specify?
 - There is no all-encompassing approach
 - These products are all specified differently

	=	M Gmail		Q Search in mail	-	Active - ?	۰ 📖
	_0			D - A			
	Mail	Compose					< >
	_			🔲 🏫 Roger Nelson	New comments on MCR draft presentation – $\ensuremath{\mathbb{R}}$	loger Nelson said what abou	2:35 PM
	Chat	Inbox	4	🗌 🚖 Lori Cole	Q1 project wrap-up - Here's a list of all the top	challenges and findings. Sur	@ Nov 11
		☆ Starred		□ ☆ Lauren Roberts	Fwd: Client resources for Q3 - Ryan, here's the	doc with all the client resou	Nov 8
	Spaces	Snoozed					
		D Important		Ethan Lattimore	Last year's EMEA strategy deck — Sending this	out to anyone who missed	Nov 8
	Meet	➢ Sent		🔲 🏫 Gloria Hill	Revised organic search numbers - Hi, all-the tab	le below contains the revise	Nov 7
	moor	Drafts		🔲 🏠 Shirley Franklin	[Updated invitation] Midwest retail sales check-in	ı — Midwest retail sales che	Nov 7
		✓ More		🗌 🚖 Keith Obrien	OOO next week - Hey, just wanted to give you a l	heads up that I'll be OOO ne	Nov 7
a)		Labels	+	🗌 🚖 Lori Cole	Logo redesign ideas — Excellent. Do you have tim	e to meet with Jeroen and	Nov 7
and the		Clients Personal		🗌 🏫 Madison Wells	Fwd: Feedback on new signup experience — Loop	oing in Annika. The feedback	Nov 6
		Project Clover		🗌 🚖 Jeffrey Clark	Town hall on the upcoming merger — Everyone, w	e'll be hosting our second t	Nov 6
		Project Dot		C 😭 Roger Nelson	Two pics from the conference — Look at the size of	of that crowd! We're only ha	Nov 6
		Project Hedgehog		🔲 🏫 Raymond Santos	[UX] Special delivery! This month's research report	rt! — We have some exciting	Nov 5
		Project Rocket Project Skyline		🗌 🏫 Lauren, me 2	Re: Project Skylight 1-pager — Overall, it looks gre	eat! I have a few suggestions	Nov 5
		~ More		🗌 🏠 Lauren Roberts	Re: Corp strategy slides - Awesome, thanks! I'm g	going to use slides 12-27 in	Nov 5
	A.			🗌 🚖 Adam Young	Updated expense report template $-$ It's here! Bas	sed on your feedback, we've	Nov 5
	(1)			🔲 🚖 Susan Johnson	Referrals from Sydney - need input $-$ Ashley and	I are looking into the Sydney	Nov 4
	2			🔲 🏠 Keith Obrien	Direct feedback from another team - Hey Susan!	Just wanted to follow up with s	Nov 4

Common specifications for HW/SW products

Typically,

- Financial
 - BOM, COGS, price
 - Time to market
- Regulatory safety, emissions
 - Anything with a radio, plugged into wall, etc.
 - For medical (and other regulated sectors) this can be quite extensive
- Industrial design
 - What does it look like, what materials are used, etc.
- Environmental resistance
 - Is it used indoors? In salt water? In an auto engine? On Mars?
 - IP [Ingress Protection] rating
- Engineering
 - Sensing, actuation, compute, comms, firmware, software, etc.

- Security & Privacy
 - Typically, user data is being communicated...what data? how is it being secured? who has access?
 - There may be regulatory requirements here as well: HIPAA
- Packaging
 - How is sent to the customer, could be simple/elaborate
- Installation and servicing
 - How does one go from "in the box" to "in use"?
 - Will it be serviced in the field? Will the SW be updated? Can the HW be fixed? Warranty?

These are not disjoint:

Needing to be updated after install: is that installation or engineering?

Needing to work outdoors will impact the materials used in the industrial design

Don't worry. Just make sure it's somewhere in document

Ultimately, specification document should encompass all requirements

- 1. It should accurately measure indoor air quality **
- What is **air quality**?
 - Based on before, this is PM2.5, PM10, NO2, SO2, CO, O3 [1h & 8h]
 - Will generally also need to measure temperature and relative humidity, since many other variables depend on those
- What is accurate?
 - Need to establish for each sensor TBD for now!
- What does indoor imply?
 - Has implications for environmental resistance
 - And availability of power [there are wall plugs, USB ports] indoors

- 2. It should be **portable** ***
- What does this mean?
- Can work without being plugged in → we really mean it should be small and light...watch vs. toaster
- For how long? 1 min? 1 h? 1 day? Other?
 - User is student: how long is student away from charger? 12h seems about right

These are both portable

- 3. It should be possible to get the data off the device **
- It needs to be "connected" somehow
- Probably not just looking at a display and writing data down...
- Wired or wireless? Left unspecified → Let's go with wireless → this then has regulatory implications because of the radio
- Lots of wireless comms approaches specific one is TBD for now

- 4. It should be a **useful pedagogical exercise** ***
- Should be possible for each student to learn some skills: PCB design/fabrication/assembly, 3DP, server set-up
- Want to connect to other classes
- Learn how to work as a team

Not sure how this will translate to specs...let's revisit

- 5. It should maintain **privacy** *
- No personally identifiable information should leave the device
 - \rightarrow implications for processing on server
- Information should be secure, only available to authorized users

6. It should be **low cost** *

• What does that mean? \$100 BOM [for electronics]

7. It should be **rugged and robust** **

- Able to be transported by holding and placing in backpack → it will require an enclosure
- Able to survive 12" drop onto table

8. Multiple systems should be able to be used **simultaneously**

 This has implications for server set up → one server for class with multiple accounts? One server/student? One server with one db w/ different permissions?

9. It should be easy to view the current and past data

- Needs some storage, some sort of display \rightarrow exactly what, TBD
- The choice will implications for firmware, software, server

10. It should leverage MIT facilities

• Must only require tools & equipment we can readily access