
6.08
Lecture 05

2/28/22 6.08 SP22 1

sprintf vs. strcat in
Lab04B?

2/28/22 6.08 SP22 2

Sprintf solution from Lab04B

2/28/22 6.08 SP22 3

Timing to build request:
1059 microseconds

Strcat implementation (mod Lab04B)

2/28/22 6.08 SP22 4

Timing to build request:
2795 microseconds

Almost three-fold slower :/

WHY????

2/28/22 6.08 SP22 5

sprintf: 1059 microseconds strcat: 2795 microsecond

• sprintf starts writing where you tell it
to.

• Sprintf also returns the number of
characters written

• Keeping track of this let’s us just keep
appending by modifying the pointer
with the total written.

• strcat works by automatically
appending to the string you point to

• But how do you actually find the end?
• Strcat has to scan the string starting at

the beginning and find the first NULL.
Then it writes after that

• As string gets longer and longer, each
call takes longer to run since the scan
has to run for longer

• Same issue with strlen()…this function
runs faster on short strings than
longer strings

Slow, Inefficient Code Wastes resources

• In many of our ESP32 applications (or server
applications) even poorly written code will ”work”,
• But at every level doing things more efficiently

(with software and hardware) can be meaningful
• 1 ms vs 3 ms seems trivial, but what if you needed

to process 1 million requests? This means 1000
seconds vs 3000 seconds.
• That means:
• 2000 fewer seconds for doing other tasks (time is $)
• That means running your processor for 2000 more

seconds (costs power and $, and of course C.R.E.A.M.)

2/28/22 6.08 SP22 6

HTTP Requests
Sort of a Review

2/28/22 76.08 SP22

HTTP

• HyperText Transfer Protocol (HTTP)
• Request-Response Protocol
• Client and Server:
• Client makes a request
• Server provides a response

• Both sides of this exchange have very strict
requirements on their formatting!

2/28/22 86.08 SP22

Basic Pattern

2/28/22 9

608dev-2.net

Request
Step 1

Response
Step 2ESP32, Browser,

etc…

client

server

6.08 SP22

For example

Basic Pattern

• The client sends a request to the server
• The server parses it, carries out the specified

actions (as dictated by internal code), and then
returns a response
• There are two major verbs for requests that we use

(though there are many others):
• GET
• POST

2/28/22 106.08 SP22

The client sends the request

• Why does the client have to initiate contact?
• Sub-question: How is the client able to direct its

message to a server that may be sitting all the way
in New Jersey (608dev.net), Toronto (608dev-2.net),
etc…?

2/28/22 116.08 SP22

HTTP is one small piece
• HTTP is built on top

of a number of
layers in the TCP/IP
• Transmission Control

Protocol (TCP)
• Internet Protocol (IP)

2/28/22 6.08 SP22 12
https://en.wikipedia.org/wiki/Internet_protocol_suite

HTTP is an example of an application layer

How to Allow Many Things to
Communicate with Many Things?

• ????

2/28/22 6.08 SP22 13

Device 1

Device 2

Device 3

Device 4
Device 5

Device 7

Device 8

Device 6

How to Allow Many Things to
Communicate with Many Things?

• Solution 0: Broadcast???
• Have Every Device Listen to Every Device

2/28/22 6.08 SP22 14

Want Device 6 to Talk with Device 2? Shout!

Device 1

Device 2

Device 3

Device 4
Device 5

Device 7

Device 8

Device 6

WON’T W
ORK

Need Dedicated Communication
Channels

• A way to send information from one device to
another device ONLY!
• This could be dedicated wires to send the 1’s and

0’s of our digital existence
• Could be particular radio frequency that sends data
• Could be sound at a particular frequency
• Many options, but need dedicated channels!

2/28/22 6.08 SP22 15

How to Allow Many Things to
Communicate with Many Things?

• Solution 1: Direct P2P
• Have every device wired to every other device

2/28/22 6.08 SP22 16

Device 1

Device 2

Device 3

Device 4

Device 5

Device 7

Device 8

Device 6

Want Device 6 to Talk with Device 2? Activate their Dedicated Wires!

Absurd But Was Done
• Early Telegraph/

Telephone, this is how it
was done originally
• Obviously didn’t scale so

usually one device
couldn’t necessarily
connect to every other
device.
• But point-to-point

wiring was very
common

2/28/22 6.08 SP22 17

Telegraph wires, Kansas, 1880s

How to Allow Many Things to
Communicate with Many Things?

• Solution 2: Exchange
• Have Every Device wired to a central exchange

2/28/22 6.08 SP22 18

Device 1

Device 2

Device 3

Device 4

Device 5

Device 7

Device 8

Device 6

Exchange
Switch

Want Device 6 to Talk with Device 2? Connect them!

How Would Work?

• Each device would need an address of some form (owner
of house, phone number, etc…) for the exchange to know
how to do the interconnect

2/28/22 6.08 SP22 19

Switching was usually done by humans at
first

Later on was done by machines/automated
telephone switching equip

Central Telephone Tower in
Stockholm Sweden ~1900

How to Allow Many Things to
Communicate with Many Things?

• Solution 2b: Nested Exchange
• Have regional exchanges
• Layer these

2/28/22 6.08 SP22 20

Device 1

Device 2

Device 3

Device 4

Device 5

Device 7

Device 8

Device 6

Exchange
Switch A

Want Device 6 to Talk with Device 2? Connect them!

Exchange
Switch B

Exchange
Switch C

Very simple cartoon.
Modern systems have
many more layers

Large Nested Exchange System
• Scales Much More easily:
• Every device does not need dedicated communication

channel with central exchange (saves copper or global
radio bandwidth)

• Addressing scheme will get more complicated.
Need to build up an addressing scheme that works
with layers of local exchanges (routers/network
switches)
• This is the TCP/IP stack!

2/28/22 6.08 SP22 21

IP (Internet Protocol) Address
• The internet as a system is set up to direct messages

based on an addressing system (each device has
number)
• Every device should be uniquely identifiable but it

doesn’t mean each device needs to have a globally
unique address nor does it mean that every device has a
constant (forever address*)
• Clients which may connect from many locations usually

have a dynamic IP address assigned by the local network
they’re interfacing through
• Many servers/heavily-used resources will have static IP

addresses which are pretty fixed in time.

2/28/22 6.08 SP22 22

*that should be the job of the MAC address, but even that can change

Dynamic and Static IP Addresses
• Some things will have globally unique static IP addresses…it is the job of

regional exchanges to assign and keep track of local dynamic IP addresses
• Device 3 and Device 7 could have same IP address actually, but that’s ok

because they live underneath two exchanges with globally unique IP
addresses and can still be known due to information tracked in each
exchange

2/28/22 6.08 SP22 23

Device 1
Dynamic

IP)

Device 2
Dynamic

IP)

Device 3
Dynamic

IP)

Device 4
Dynamic

IP)

Device 5
Dynamic

IP)

Device 7
(Dynamic

IP)

Device 8
Dynamic

IP)

Device 6
(Dynamic

IP)

Exchange
Switch A
(Static IP)

Exchange
Switch B
(Static IP)

Exchange
Switch C
(Static IP)

Exchange
Switch D
(Static IP)

IP (Internet Protocol) Address
• Unlike MAC addresses, IP addresses are usually

expressed in base 10 numbers.
• The original IP addresses were four bytes, and we write

them as each byte (in base 10) separated by periods:
• 192.168.1.1

2/28/22 6.08 SP22 24

b11000000_10101000_00000001_00000001

Having a Static IP is Good if You’re
an Online Resource
• If your address is fixed/constant/known it is easy

for many devices to connect to you.
• 608dev.net has address: 50.116.55.137
• iesc.io has address: 172.104.28.81
• 608dev-2.net has address: 172.105.8.169
• Static IP addresses are not a moving target and

random devices always know where you’re at.
• This is why clients start the conversation with a

request…they know where to send it. The server
may not know where the client is “in” the internet

2/28/22 6.08 SP22 25

IPv4 The Original
• Around when the internet was created, they decided

that we as a world would need one 32 bit number to
describe/uniquely label all resources on the internet
• 2**32 ~ 4.29 billion (from previous lectures)
• Is this enough?
• No…called “IPv4 Exhaustion”…happened on January 31,

2011….though there’s still unused IPv4 addresses
• they’re not all actively used, but all are “owned”…going

rate of about 10 to 20 bucks a piece

2/28/22 6.08 SP22 26

MIT and IP Addresses
• MIT was a major contributor to the early internet
• Back when they were worth nothing, MIT claimed a 24 bit

block (about 1/256th) of the internet as their own (4.29
billion/256 is about 16.5 million addresses)
• Times have changed. Those worthless bits are valuable now
• MIT “returned” 8 million of them in 2017/18/19 for an

undisclosed sum (to Amazon)
• The Institute still has about 6 million of its remaining 8

million IPv4 addresses unused/unallocated

2/28/22 6.08 SP22 27

Solution to IP Exhaustion is IPv6
• Internet is migrating to newer standard…IPv6.
• Now use 128 bit address rather than 32 bit:
• 3.4×10!"addresses

• Should be good for a while
• There are reverse compatibility issues and various

other things in place, so IPv4 addresses are still
valulable
• MIT owns about 2.0×10!" of these new IPv6

addresses by the way

2/28/22 6.08 SP22 28

The internet is far more
complicated than this
• 6.033 goes into this a lot:
• How do dynamic IP addresses get assigned
• How does “608dev.net” get mapped to 50.116.55.137
• How does a packet from a dynamic IP get sent to a static

IP and then back again while lots of other ones are going
around as well.
• Maybe IPv4 vs. IPv6

2/28/22 6.08 SP22 29

6.033
Computer Systems
Engineering

Back to HTTP: Basic Pattern
• The client sends a request to the server
• The server parses it, carries out the specified

actions (as dictated by internal code), and then
returns a response
• There are two major verbs in HTTP requests that

we use (though there are many others):
• GET
• POST

2/28/22 306.08 SP22

*other HTTP verbs include: HEAD, PUT, DELETE,OPTIONS,TRACE,CONNECT

Basic Pattern

2/28/22 31

608dev-2.net

Request
Step 1
INPUT

Response
Step 2

OUTPUT
ESP32, Browser,

etc…

client

server

6.08 SP22

INPUTàOUTPUT
INPUTàOUTPUT
INPUTàOUTPUT
Is this a stateless or stateful response?

Systems on the Internet are the same
as Systems not on the Internet

• They’re still just digital computers that get inputs
and produce outputs

2/28/22 6.08 SP22 32

Computation 𝑜𝑖

𝑜 = 𝑓(𝑖)

STATELESS:

Computation

𝑜𝑖
𝑠

𝑜!"#, 𝑠!"# = 𝑓(𝑖!, 𝑠!)
STATEFUL:

State on the Server
• Servers are computers
• They’re running most of the time
• They can read and write files and those files can store

information over time

2/28/22 6.08 SP22 33

• One general way to read/write files efficiently on a
server is with a database, which we’ll start working with
this week.
• If a server can store and access information based on

previous interactions in its database, it has the ability to
provide stateful behavior (response based on query and
past information)

What makes a Database a Database?
• Any persistent file-storing thing that allows

quick storing and looking up of information
• A lot of design has to go into building a system

that can quickly store and look up particular
things!
• Deal with simultaneous connections!
• Deal with data stored across multiple

machines!
• Lots to consider as things get very large!

2/28/22 6.08 SP22 34

6.814
Database Systems

Two Broad Classes

• Table-like data structure

2/28/22 6.08 SP22 35

SQL NOSQL
• Tree-like or “dictionary”

data structure

{'values': {}, 'data':
'{“cat”:”brown”,”dog”:”bl
ue”,"favorite_numbers":[1
,4,11]}', 'method':
'POST', 'args': [],
'is_json': True}

Both have strengths, both have weaknesses

We use SQLite in 6.08
• Arguably the most widely used database software on

Earth
• Uses SQL dialect, which is good to get some

experience with (Lab05B and beyond)
• Databases are files (easy to backup, move around)
• Lightweight and easy to set up (doesn’t need a DB

server running)

2/28/22 6.08 SP22 36

608dev-2.net Server

2/28/22 6.08 SP22 37

Central Process
Python Flask

(Constantly running)

Incoming http request targeted
At a particular script

1.
Hand off incoming data
to Python with your
script subprocess

2.

Result of your code
handed back to
main process

3.

Generated result is piped to
original requester as response

4.

Your function
handed inputs, and

given five seconds to
run/return response

my_script.py

608dev-2.net/sandbox

Must use Database to Store State!
• From request to request, your python code/functions

need the ability to refer to history
• Need a database to act as global variables that live

out of scope
• You cannot have a continuously running Python

process on our server

2/28/22 6.08 SP22 38

The Meaning of GETs and POSTs and State

• GETs are meant to request a resource from a server. In
general, a server should not update its state
(databases) from a GET

• POSTs are meant to report/provide information to a
server with the intent for it to be stored/logged. This
is usually meant to be a state-changing action

2/28/22 396.08 SP22

Reality*
• You can do whatever with GETs and POSTs (put

stuff in database in response to both of them if you
want), but it is a good convention to use with when
creating an API or interfacing with one

2/28/22 406.08 SP22

Do you think Facebook doesn’t update its “state” when you do a simple GET request to
view messages? You are mistaken

GET

GET /sandbox/sc/jodalyst/special.py?cat=brown&dog=blue HTTP/1.1
Host: 608dev-2.net

2/28/22 41

{'args': ['dog', 'cat'], 'method': 'GET', 'values': {'cat': 'brown', 'dog': 'blue'}}

On the Python side of our web framework the request dictionary
looks like the following:

Query arguments can act as inputs to our server side scripts!

url has all key-value query arguments

6.08 SP22

GET is what you do in a web browser

https://www.amazon.com/UCTRONICS-Complete-
Development-Temperature-
Humidity/dp/B071F2TTCZ/ref=sr_1_2_sspa?ie=UTF8&qi
d=1520861199&sr=8-2-spons&keywords=esp32&psc=1
• ie: UTF8 (text to render)
• qid: 1520861199 (query id…for logging/remembering actions)
• sr=8-2-spons (no idea)
• keywords=esp32 (my search query)
• psc=1 (no idea)

2/28/22 426.08 SP22

POST

2/28/22 43

POST /sandbox/sc/jodalyst/special.py HTTP/1.1
Host: 608dev-2.net
Content-Type: application/x-www-form-urlencoded
Content-Length: 18

cat=brown&dog=blue

{'method': 'POST', 'form': {'cat':'brown', 'dog': 'blue'},
'is_json': False, 'values': {}, 'args': []}

url same as before

Specify how data in body is

body

How long is body

On the Python side of our system the request dictionary looks like
the following:

6.08 SP22

POST Body Format
• POST requests have a Body (unlike GET). The body has

much flexibility in the size and “shape” of data that it
includes
• Two big ones we’ll use in 6.08:
• application/x-www-form-urlencoded:
• e.g. cat=brown&dog=blue
• Key-value

• application/json:
• e.g. {“cat”:”brown”,”dog”:”blue”}
• Much more flexible and nestable, though complicated format

(like a Python dictionary kinda)

2/28/22 6.08 SP22 44

POST Body Format

• Content-Length:
• Sometimes not needed, but a good thing to include
• Recommend you put in no matter what

2/28/22 6.08 SP22 45

2/28/22 46

{'values': {}, 'data':
'{“cat”:”brown”,”dog”:”blue”,"favorite_numbers":[1,4,11]}', 'method':
'POST', 'args': [], 'is_json': True}

POST

POST /sandbox/sc/jodalyst/special.py HTTP/1.1
Host: 608dev-2.net
Content-Type: application/json
Content-Length: 56

{“cat”:”brown”,”dog”:”blue”,"favorite_numbers":[1,4,11]}

Json provides more flexibility in the structure of the body

On the Python side of our system the request dictionary looks like
the following:

6.08 SP22

POST

2/28/22 47

{'data': 'cat=brown&dog=blue', 'method': 'POST', 'args': [], 'values': {}, 'is_json': True}

POST /sandbox/sc/jodalyst/special.py HTTP/1.1
Host: 608dev-2.net
Content-Type: application/json
Content-Length: 18

cat=brown&dog=blue

If you mix up the encoding/content-type some systems will
throw errors, and some won’t…our’s will just shove it into
‘data’ field, so you might need to do some checking on
that to see if it is indeed json

On the Python side of our system the request dictionary looks like
the following:

6.08 SP22

Wrong content-type for body

“Pros”/”Cons”?
• In a GET, all components are in the URL, including

potentially things that matter. This is less secure since
information is automatically stored in server logs
• In a POST you have a body (GET does not), if you are

sending up potentially secure info, you should put it into
the POST (and also encrypt..but we’ll worry about that
later)
• POST is also far less limited in what you can put in body

(images, audio, whatever) while GET is limited mostly to
key-value pairs

2/28/22 486.08 SP22

2/28/22 49

{'args': ['snow', 'foo'], 'values': {'snow': 'no', 'foo':
'bar'}, 'data':
'{“cat”:”brown”,”dog”:”blue”,"favorite_numbers":[1,4,11]}',
'method': 'POST', 'is_json': True}

On the Python side of our system the request dictionary looks like
the following:

Putting Query Arguments in POST?
• Yeah you can do it. It does sort of void the point and

benefit of POST so try to avoid it unless you’re using it
to direct where data goes (not hard/fast rule)

POST /sandbox/sc/jodalyst/special.py?foo=bar&snow=no HTTP/1.1
Host: 608dev-2.net
Content-Type: application/json
Content-Length: 28

{“cat”:”brown”,”dog”:”blue”,”favorite_numbers”:[1,4,11]}

6.08 SP22

Chained-Events
• Devices can act as both servers and clients in

certain contexts.
• We will use this framework in the Wikipedia

exercises (week 05), and a number of you are using
this in current design exercises!
• This is an extremely common system in the world.
• Start building systems that exist across multiple

platforms!

2/28/22 506.08 SP22

Proxy Pattern

2/28/22 51

608dev-2.net
Request 1

Step 1

Response 1
Step 4

ESP32,
Browser, etc…

Client 1

Server 1, Client 2

outsider.com
Server 2

Request 2
Step 2

Response 2
Step 3

6.08 SP22

Why not interface directly?
• Why not have your embedded device directly chat with

some 3rd party server somewhere?
• Because if you do that then you’re relying on other

people,
• and other people will always let you down.

2/28/22 526.08 SP22

• If a server you control can interface between your
deployed devices and outside resources you can:
• Use server-side methods for processing/filtering data
• Offload significant computation from deployed devices
• More easily change server code in response to outside world

changes (rather than recall your deployed devices)

Chain of Events

1. ESP (Client 1) sends request to 608dev-2.net (Server 1)
2. 608dev-2.net (Client 2) sends request to Wikipedia (Server 2)
3. Wikipedia (Server 2) provides response to 608dev-2.net (Client 2)
4. 608dev-2.net (Server 1) provides response to ESP (Client 1)

2/28/22 53

• The machine in the middle takes turns being both a
server and a client (so the role can change)

6.08 SP22

Example/Design: Smart Lighting
(Design Exercise)

2/28/22 546.08 SP22

One way to do it

2/28/22 55

lighto.net
Request

Response
ESP32,

controlling
colorLED

Client 1

Server

User on a Web
Browser

Client 2
Request

Response

Periodic GET
(2 times/second)

User-driven POST

6.08 SP22

HTTP Requests

2/28/22 56

POST /light_control.py HTTP/1.1
Host: lighto.net
Content-Type: application/json
Content-Length: 56

{“light_id”:1989,”light_level”:42}}

GET /light_control.py?lid=1989 HTTP/1.1
Host: lighto.net

2 times per second the
smart light will:

Whenever User Wants:
From a phone app or browser:

Request:

Request:

Response:

HEADER stuff

level=42

HEADER stuff

change confirmed

Response:

6.08 SP22

*probably be some credentials in there too
Then make sure its lighting matches the
set level

Just the Surface

• The “Internet” and the entire stack of software and
hardware that it depends upon is extremely
complex.
• Billions of lines of code in dozens of languages on

millions of pieces of equipment all designed to
work with one another efficiently.
• Is pretty amazing when it works.

2/28/22 6.08 SP22 57

